Journal of the American Chemical Society
Article
circuit voltage (V ), with smaller contributions from the short-
effective as cathode modification layers in OPV devices, giving
PCE values approaching 8%.
oc
circuit current density (J ) and the fill factor (FF). It is
sc
noteworthy that azulene-functionalized sulfobetaine methacry-
lates, when used as interlayers, were found to exhibit
comparable or superior performance to the respective
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and additional synthesis, photo-
■
*
S
3
6,37
conjugated-polymer-based structures.
Additionally, devices
fabricated with these interlayers outperformed the commonly
used LiF cathode modifier while offering the additional benefits
of air stability and compatibility with solution and roll-to-roll
3
6
processing. Voc enhancements in devices with cathode
modifiers may arise from the respective WF reduction at the
electrode, creating a built-in potential gradient across the active
layer between the electrodes. In addition, such electrode
modifications allow for increases in Jsc and FF via charge
extraction control and recombination reduction. To gain
additional insight into the performance mechanism of
zwitterionic azulene-containing polymers, thin films of the
respective polymers on Ag substrates were studied by
ultraviolet photoelectron spectroscopy (UPS). UPS was used
to measure the WF of the substrates, revealing an interfacial
dipole as a result of the polymer coatings (Figure 12).
AUTHOR INFORMATION
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors acknowledge support from the National Science
Foundation (NSF-CHE-1152360, T.E.) associated with poly-
mer synthesis and the Department of Energy-supported Energy
Frontier Research Center (EFRC) at UMass Amherst
(
H.W.W., T.P.R.) for solar cell fabrication and characterization.
REFERENCES
■
(
1) Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano,
A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; Fenoll,
M.; Dindar, A.; Haske, W.; Najafabadi, E.; Khan, T. M.; Sojoudi, H.;
Barlow, S.; Graham, S.; Bred
Kippelen, B. Science 2012, 336, 327−332.
2) He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photonics
012, 6, 593−597.
3) Anderson, A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81,
́
as, J.-L.; Marder, S. R.; Kahn, A.;
(
2
(
4
(
941−4946.
4) Lemal, D. M.; Goldman, G. D. J. Chem. Educ. 1988, 65, 923−925.
5) Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205−209.
6) Robb, M. J.; Ku, S.-Y.; Brunetti, F. G.; Hawker, C. J. J. Polym. Sci.,
(
(
Part A: Polym. Chem. 2013, 51, 1263−1271.
(7) Amir, E.; Amir, R. J.; Campos, L. M.; Hawker, C. J. J. Am. Chem.
Soc. 2011, 133, 10046−10049.
Figure 12. UPS results for bare Ag, PSBMA, and azulene-containing
PASB and PATSB copolymers.
(
8) Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3,
2
(
1
(
721−2725.
9) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14, 1580−
583.
10) Koch, M.; Blacque, O.; Venkatesan, K. J. Mater. Chem. C 2013,
The absolute magnitude of the Δ values, derived from the
difference between the secondary electron cutoff energies
(
0
ESEC) of Ag and polymer-coated Ag, were in the range of
.66−1.07 eV for the zwitterionic homo- and copolymers. That
1, 7400−7408.
(11) Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-I.; Ohba, Y.; Katagiri,
H. J. Am. Chem. Soc. 2013, 135, 19095−19098.
the azulene-based methacrylate interlayers outperformed the
pure sulfobetaine zwitterion polymer in devices (i.e., PSBMA,
which gave the largest Δ value) provides compelling evidence
for the importance of factors beyond the interfacial dipole, such
as surface wetting. Atomic force microscopy (AFM) measure-
ments revealed PSBMA to provide nonuniform coverage of the
active layer, whereas the azulene-based polyzwitterions afforded
a smooth coverage as would be desired in an interlayer material
(12) Wang, F.; Lai, Y.-H.; Kocherginsky, N. M.; Kosteski, Y. Y. Org.
Lett. 2003, 5, 995−998.
13) Lacroix, P. G.; Malfant, I.; Iftime, G.; Razus, A. C.; Nakatani, K.;
Delaire, J. A. Chem.Eur. J. 2000, 6, 2599−2608.
14) Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.;
Asselberghs, I.; Clays, K.; Razus, A. C. Chem. Mater. 2004, 16,
543−3551.
15) Salman, H.; Abraham, Y.; Tal, S.; Meltzman, S.; Kapon, M.;
(
(
3
(
(
Figure S8 in the SI).
Tessler, N.; Speiser, S.; Eichen, Y. Eur. J. Org. Chem. 2005, 2207−
2
8
(
(
212.
(16) Zielin
38−846.
SUMMARY
́
̧
ziorek, M.; Jurczak, J. Chem.Eur. J. 2008, 14,
■
A new functional polymer platform was realized through the
preparation of azulene-substituted methacrylate monomers and
their successful use in chain-growth polymerization. Controlling
the density of pendant azulene groups along the polymer
backbone dictated the optical properties and excitonic
interactions upon acid doping, distinguishing this polymer
platform from simple substituted azulenes. Azulene copolymers
with sulfobetaine methacrylate were found to be remarkably
17) Churchill, M. R. Prog. Inorg. Chem. 1970, 53−98.
18) Wada, E.; Nakai, T.; Okawara, M. J. Polym. Sci., Polym. Chem. Ed.
1
(
(
978, 16, 2085−2087.
19) Kurita, Y.; Kubo, M. J. Am. Chem. Soc. 1957, 79, 5460−5463.
20) Organic Photochemistry and Photophysics; Ramamurthy, V.,
Schanze, K. S., Eds.; CRC Press: Boca Raton, FL, 2006.
(21) Pariser, R. J. Chem. Phys. 1956, 25, 1112−1116.
(22) Pariser, R. J. Chem. Phys. 1956, 24, 250−268.
F
dx.doi.org/10.1021/ja504670k | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX