Communications
Adv. Funct. Mater. 2002, 12, 653; e) A. P. Alivisatos, Science
1996, 271, 933; f) C. B. Murray, C. R. Kagan, M. G. Bawendi,
Annu. Rev. Mater. Sci. 2000, 30, 545.
sized in an organic phase were covalently bonded on silica
spheres, and subsequently nanoparticles of Au, CdSe/ZnS, or
Pd were assembled. These multifunctional nanoparticle/silica
sphere assemblies are likely to find many catalytic and
biomedical applications derived from their combination of
magnetic properties with surface plasmon resonance, lumi-
nescence, or catalysis.
[2] a) F. Caruso, Adv. Mater. 2001, 13, 11; b) F. Caruso, R. A. Caruso,
H. Möhwald, Science 1998, 282, 1111; c) F. Caruso, H. Lichten-
feld, H. Möhwald, M. Giersig, J. Am. Chem. Soc. 1998, 120, 8523;
d) F. Caruso, A. S. Susha, M. Giersig, H. Möhwald, Adv. Mater.
1999, 11, 950; e) F. Caruso, M. Spasova, A. Susha, M. Giersig,
R. A. Caruso, Chem. Mater. 2001, 13, 109; f) M. Spasova, V.
Salgueiriæo-Maceira, A. Schlachter, M. Hilgendorff, M. Giersig,
L. M. Liz-Marzµn, M. J. Farle, J. Mater. Chem. 2005, 15, 2095;
g) V. Salgueiriæo-Maceira, M. Spasova, M. Farle, Adv. Funct.
Mater. 2005, 15, 1036; h) A. Rogach, A. Susha, F. Caruso, G.
Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A.
Eychmüller, H. Weller, Adv. Mater. 2000, 12, 333; i) F. Caruso,
M. Spasova, V. Salgueiriæo-Maceira, L. M. Liz-Marzµn, Adv.
Mater. 2001, 13, 1090; j) T. Cassagneau, F. Caruso, Adv. Mater.
2002, 14, 732.
Experimental Section
Synthesis of amino-functionalized Stöber silica spheres: Uniform
100-, 300-, and 500-nm silica spheres were synthesized by the Stöber
method.[9] The surfaces of the silica spheres were functionalized with
amino groups by treatment with APSin refluxing ethanol.
Ligand exchange of Fe3O4 nanoparticles synthesized in an organic
phase: Monodisperse Fe3O4 nanoparticles (14- and 7-nm) capped with
oleic acid were synthesized in an organic phase by procedures
described previously.[5h] 50 mg of the as-synthesized nanoparticles
were dispersed in 3 mL of chloroform and the resulting solution was
added to 30 mL of BMPA in chloroform (0.1m solution).[13] After
stirring the solution at room temperature for 48 h, the nanoparticles
were precipitated by adding an excess of ethanol. The precipitated
nanoparticles were retrieved by centrifugation.
[3] a) A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, W. L. Yang, Z. Gao,
Chem. Commun. 2002, 350; b) E. M. Claesson, A. P. Philipse,
Langmuir 2005, 21, 9412.
[4] a) S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas,
Chem. Phys. Lett. 1998, 288, 243; b) S.-W. Kim, M. Kim, W. Y.
Lee, T. Hyeon, J. Am. Chem. Soc. 2002, 124, 7642.
[5] a) C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc.
1993, 115, 8706; b) S. Sun, C. B. Murray, D. Weller, L. Folks, A.
Moser, Science 2000, 287, 1989; c) T. Hyeon, S. S. Lee, J. Park, Y.
Chung, H. B. Na, J. Am. Chem. Soc. 2001, 123, 12798; d) S. Sun,
H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li,
J. Am. Chem. Soc. 2004, 126, 273; e) F. Dumestre, B. Chaudret,
C. Amiens, M.-C. Fromen, M.-J. Casanove, M. Respaud, P.
Zurcher, Angew. Chem. 2002, 114, 4462; Angew. Chem. Int. Ed.
2002, 41, 4286; f) F. Dumestre, B. Chaudret, C. Amiens, M.
Respaud, P. Fejes, P. Renaud, P. Zurcher, Angew. Chem. 2003,
115, 5371; Angew. Chem. Int. Ed. 2003, 42, 5213; g) J. Park, E.
Lee, N.-M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J.-G. Park,
H.-J. Noh, J.-Y. Kim, J.-H. Park, T. Hyeon, Angew. Chem. 2005,
117, 2932; Angew. Chem. Int. Ed. 2005, 44, 2873; h) J. Park, K.
An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M.
Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891; i) F. Dumestre, B.
Chaudret, C. Amiens, P. Renaud, P. Fejes, Science 2004, 303, 821;
j) C. Desvaux, C. Amiens, P. Fejes, P. Renaud, M. Respaud, P.
Lecante, E. Snoeck, B. Chaudret, Nat. Mater. 2005, 4, 750;
k) E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornow-
ski, M. Hasse, H. Weller, J. Am. Chem. Soc. 2002, 124, 11480;
l) E. V. Shevchenko, D. V. Talapin, H. Schnablegger, A. Kor-
nowski, ꢀ. Festin, P. Svedlindh, M. Hasse, H. Weller, J. Am.
Chem. Soc. 2003, 125, 9090.
[6] a) A. Hu, G. T. Yee, W. Lin, J. Am. Chem. Soc. 2005, 127, 12486;
b) R. Weissleder, K. Kelly, E. Y. Sun, T. Shtatland, L. Josephson,
Nat. Biotechnol. 2005, 23, 1418; c) J. W. M. Bulte, S.-C. Zhang, P.
van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, J. A.
Frank, Proc. Natl. Acad. Sci. USA 1999, 96, 15256; d) Y.-W. Jun,
Y.-M. Huh, J.-S. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-
S. Kim, J.-S. Shin, J.-S. Suh, J. Cheon,J. Am. Chem. Soc. 2005,
127, 5732; e) H. Gu, P.-L. Ho, K. W. T. Tsang, L. Wang, B. Xu, J.
Am. Chem. Soc. 2003, 125, 15702; f) C. Xu, K. Xu, H. Gu, R.
Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, J. Am. Chem. Soc. 2004,
126, 9938; g) C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng,
X. Zhang, B. Xu, J. Am. Chem. Soc. 2004, 126, 3392; h) J. Won,
M. Kim, Y.-W. Yi, Y. H. Kim, N. Jung, T. K. Kim, Science 2005,
309, 121.
Synthesis of Mag-SiO2: The BMPA-stabilized magnetite nano-
particles dispersed in 3 mL of THF were added to a solution
containing 0.1 g of amino-functionalized silica spheres dispersed in
20 mL of THF, and the resulting dispersion was heated to reflux for
3 h. The magnetite nanoparticle/silica sphere assemblies were isolated
by three cycles of centrifugation, redispersion in THF, and magnetic
separation.
Synthesis of Mag-SiO2-Au: Citrate-stabilized gold nanoparticles
with sizes of 1–3 and 13 nm were prepared by procedures described
previously.[10] 10 mg of Mag-SiO2 was dispersed in 30 mL of aqueous
Au nanoparticle solution, and the resulting aqueous dispersion was
stirred for 6 h at room temperature. The Mag-SiO2-Au spheres were
isolated by three cycles of centrifugation, redispersion in water, and
magnetic separation.
Synthesis of Mag-SiO2-CdSe/ZnS: CdSe/ZnS nanoparticles were
prepared by a procedure described previously.[11] A dispersion of
20 mg of CdSe/ZnS nanoparticles in 3 mL of chloroform was mixed
with 10 mg of Mag-SiO2 in 10 mL of chloroform, and the resulting
dispersion was stirred at room temperature for 6 h. The Mag-SiO2-
CdSe/ZnS spheres were isolated by three cycles of centrifugation,
redispersion in chloroform, and magnetic separation.
Synthesis of Mag-SiO2-Pd: 5-nm Pd nanoparticles were prepared
by a procedure described previously.[12] A dispersion of 20 mg of Pd
nanoparticles in 3 mL of chloroform was mixed with 10 mg of Mag-
SiO2 in 10 mL of chloroform, and the resulting dispersion was stirred
at room temperature for 6 h. The Mag-SiO2-Pd spheres were isolated
by three cycles of centrifugation, redispersion in chloroform, and
magnetic separation.
Received: November 18, 2005
Revised: May 12, 2006
Published online: June 27, 2006
Keywords: colloids · materials science · nanostructures ·
.
self-assembly
[7] V. Salgueiriæo-Maceira, M. A. Correa-Duarte, M. Farle, Small
2005, 1, 1073.
[8] S. I. Stoeva, F. Huo, J.-S. Lee, C. A. Mirkin, J. Am. Chem. Soc.
2005, 127, 15362.
[1] a) G. Schmid, Nanoparticles: From Theory to Application,
Wiley-VCH, Weinheim, 2004; b) K. J. Klabunde, Nanoscale
Materials in Chemistry, Wiley-Interscience, New York, 2001;
c) T. Hyeon, Chem. Commun. 2003, 923; d) A. L. Rogach, D. V.
Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, H. Weller,
[9] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 4789 –4793