pubs.acs.org/Langmuir
©
2010 American Chemical Society
Designed Synthesis of Au/Ag/Pd Trimetallic Nanoparticle-Based Catalysts
for Sonogashira Coupling Reactions
P. Venkatesan and J. Santhanalakshmi*
Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
Received March 22, 2010. Revised Manuscript Received April 16, 2010
Pdnp and Pd containing trimetallic nanoparticles (tnp) are synthesized by chemical method with cetyltrimethylam-
monium bromide as the capping agent. Compositionally, four different tnp are prepared and the particle sizes are
characterized by UV-vis spectra, HR-TEM, and XRD measurements. The catalytic activities of Pdnp and tnp
are tested using the Sonogashira C-C coupling reaction. The product yield and recyclability of the recovered catalysts
are studied. tnp (1:1:1) exhibited better catalysis than Pdnp, which may be due to the concerted electronic effects of the
Au-Ag core onto the Pd shell atoms.
The use of transition metal nanoparticles of Pt, Pd, Ru, Au, Cu,
Ag, and so forth as catalysts in organic C-C coupling reactions
has placed nanometal catalysis, an important frontier of research
Scheme 1. Sonogashitra C-C Coupling Reaction
1
in recent years. For this purpose, mono, bi, tri, and multimetallic
nanoparticles in solutions are prepared with appreciable stability
using a variety of capping agents such as surfactant micelles,
functional polymers, dendrimers, and so forth. The use of
2
for the nanoparticles of expensive noble metals such as palladium
and platinum. In view of “atom economy”, the synthesis of core/
shell nanoparticles having a cheap metal core and a noble metal
shell is desirable. Several palladium-containing bi- and trimetallic
nanoparticles including core/shell structures have been syn-
nanometal catalysts in many cases has simplified the reaction
procedures and has shown versatilities like product specificity,
3
recyclability of catalysts, high turnover, and so forth. Of late,
there have been many reports on the use of phosphine-free Pd
nanoparticles (Pdnp) as successful replacements of air and moist-
ure sensitive and inert atmosphere requiring conditions of Sono-
7
thesized. In most of these core/shell nanoparticles, however,
palladium is in the core and the other metal such as gold and or
silver covers the surface of palladium, which is not useful for the
catalytic reactions involving palladium as an active catalytic
4
gashira C-C coupling reactions (Scheme 1).
Palladium nanoparticles have been tested as catalysts for
8
5
,6
species. Luis M. Liz Marzan et al. synthesized core/shell Au-Ag
various reactions, because catalytic reactions occur on the
surface of the nanoparticles. This issue becomes very important
nanoparticles from the consecutive reduction of HAuCl and
4
AgNO ; Murali Sastry et al. synthesized core/shell Ag-Pd nano-
3
particles from the consecutive reduction of AgNO and H PdCl
*
jslakshmi@yahoo.co.in (J. Santhanalakshmi) and venkatesanorg@
gmail.com (P. Venkatesan).
1) (a) Narayanan, R.; E1-Sayed, M. A. Langmuir 2005, 21, 2027. (b) Li, Y.;
3
2
4
through the chemical method. In this study, the authors claimed
that palladium nanoparticles catalyzed the reduction of gold and
silver precursors and induced the deposition of Au-Ag atoms on
the surface of Pd nanoparticles. Herein, we report on the synthesis
of Au-Ag-Pd trimetallic nanoparticles (tnp) with Au-Ag rich
core/Pd-rich shell structure from the chemical method of gold,
silver, and palladium precursors.
(
Hong, X. M.; Collard, D. M.; E1-Sayed, M. A. Org. Lett. 2000, 15, 2385. (c) Na, Y.;
Park, S.; Han, S. B.; Han, H.; Ko, S.; Chang, S. J. Am. Chem. Soc. 2004, 126, 250.
(
d) Tsunoyama, H.; Sakurai, H.; Ichikuni, N.; Negishi, Y.; Tsukuda, T. Langmuir 2004,
0, 11293. (e) Rajender Reddy, K; Nadakuditi, S; Kumar; Sreedhar, B.; Lakshmi
Kantam, M. J. Mol. Catal. A: Chem. 2006, 252, 136.
2) (a) Murugadoss, A; Goswami, P.; Paul, A.; Chattopadhyay, A. J. Mol.
Catal. A: Chem. 2009, 304, 153. (b) Daniel, M.; Astruc, D. Chem. Rev. 2004, 104, 293.
c) Astruc, D.; Chardac, F. Chem. Rev. 2001, 101, 2991. (d) Ikegami, S.; Hamamoto, H.
2
(
(
The current synthetic procedure is a modified version of the
method developed for the synthesis of various nanoparticles of
metals, which employs the chemical method of metal-surfactant
Chem. Rev. 2009, 109, 583. (e) Pittelkow, M.; Moth-Poulsen, K.; Boas, U.; Christensen,
J. B. Langmuir 2003, 19, 7682.
(
3) (a) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757.
b) Richardson, J. M.; Jones, C. W. J. Catal. 2007, 251, 80. (c) Hou, W.; Dehm,
N. A.; Scott, R. W. J. J. Catal. 2008, 253, 22.
4) (a) Stevens, P. D.; Fan, G.; Li, J.; Yen, M.; Gao, Y. Chem. Commun. 2005,
(
9
complexes. The colloidal dispersions of CTAB protected
(
Au-Ag bimetallic nanoparticles were prepared by refluxing of
4
1
435. (b) Deshmulch, R. R.; Rajagopal, R.; Srinivasan, K. V. Chem. Commun. 2001, 17,
544. (c) Rajender Reddy, K.; Kumar, N. S.; Surendra Reddy, P.; Sreedhar, B.; Lakshmi
the aqueous solution of HAuCl and AgNO in the presence of
4
3
1
0
CTAB. The molar ratio of Au-Ag was 1/1, and the molar ratio
Kantam, M. J. Mol. Catal. A: Chem. 2006, 252, 12. (d) Kundu, N. G.; Pal, M.;
Mahanty, J. S.; Dasgupta, S. K. J. Chem. Soc., Chem. Commun. 1992, 41. (e) Jian-
Zhong, J.; Chun, C. J. Colloid Interface Sci. 2007, 307, 300. (f) Bates, C. G.; Saejueng,
P.; Murphy, J. M.; Venkataraman, D. Org. Lett. 2002, 4, 4727. (g) Hu, Y.; Nawoschik,
K. J.; Liao, Y.; Ma, J.; Fathi, R.; Yang, Z. J. Org. Chem. 2004, 69, 2235.
(7) (a) Scott, R. W. J.; Datye, A. K.; Crooks, R. M. J. Am. Chem. Soc. 2003, 125,
3708. (b) Mizukoshi, Y.; Fujimoto, T.; Nagata, Y.; Oshima, R.; Maeda, Y. J. Phys.
Chem. B 2000, 104, 6028. (c) Shu-Hui, T.; Yi-Hsin, L.; Pei-Lin, W.; Chen-Sheng, Y.
J. Mater. Chem. 2003, 13, 978.
(8) (a) Teranishi, T.; Miyake, M. Chem. Mater. 1999, 11, 3414. (b) Lu, P.;
Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. J. Phys. Chem. B 1999, 103, 9673.
(9) (a) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. J. Am. Chem. Soc.
2001, 123, 12798. (b) Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang,
J. Z.; Hyeon, T. J. Am. Chem. Soc. 2003, 125, 11100.
(
5) (a) Ding, J. H.; Gin, D. L. Chem. Mater. 2000, 12, 22. (b) Li, Y.; El-Sayed,
M. A. J. Phys. Chem. B 2001, 105, 8938. (c) Martin, J. E.; Wilcoxon, J. P.; Odinek, J.;
Provencio, P. J. Phys. Chem. B 2002, 106, 971. (d) Kim, S. W.; Park, J.; Jang, Y.;
Chung, Y.; Hwang, S.; Hyeon, T. Nano Lett. 2003, 3, 1289.
(
6) (a) Reetz, M. T.; Westermann, E. Angew. Chem., Int. Ed. 2000, 39, 165.
(
(
b) Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.
c) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39. (d) Rahim, E. H.; Kamounah,
F. S.; Fredericksen, J.; Christensen, J. B. Nano Lett. 2001, 1, 499. (e) Kogan, V.; Aizenshtat,
Z.; Popovitz-Biro, R.; Neumann, R. Org. Lett. 2002, 4, 3529.
(10) Singh, A. V.; Bandgar, B. M.; Kasture, M.; Prasad, B. L. V.; Sastry, M.
J. Mater. Chem. 2005, 15, 5115.
Langmuir 2010, 26(14), 12225–12229
Published on Web 05/13/2010
DOI: 10.1021/la101088d 12225