Charge Transfer in Amino-Substituted BDP Dyes
J. Phys. Chem. A, Vol. 102, No. 50, 1998 10219
supposed to be coordinated mainly by the four crown oxygen
atoms and one or two solvent molecules. This accounts for
the much lower fluorescence enhancement because the inhibition
of the nonradiative deactivation pathway can be only achieved
by effective coordination of the metal ion to the crown nitrogen.
fluorescent probes for metal ions showing intense absorption
and large fluorescence changes in an analytically useful
wavelength region.
Acknowledgment. Financial support by the Deutsche For-
schungsgemeinschaft (DFG), the Fonds der Chemischen Indus-
trie, and the Bayerische Staatsregierung (Sonderprogramm f u¨ r
Infrastrukturmassnahmen) is gratefully acknowledged.
2
n+
The good correlation of FEF and n /r for all the cations studied
+
except for Li confirms this complexation behavior. Similar
effects have been found by us for intramolecular CT fluorescent
probes as well.5
9
References and Notes
A closer examination of the fluorescence lifetimes of the
(1) Lakowicz, J. R. Topics in Fluorescence Spectroscopy; Plenum
2
+
2+
2+
+
+
complexes with Ca , Sr , Ba , Li , and Na reveals the
following tendencies: (i) both fluorescence lifetimes increase
with increasing values for FEF, and (ii) the increase in the
relative amplitude of the fast component is in good correlation
with the cation radius. The first correlation suggests that the
increase in the fluorescence lifetimes of both components seems
to be the direct consequence of the complex formation in the
ground state and the emission of both excited complex conform-
Press: New York, 1994; Vols. 1-4.
(2) Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecule
Recognition, ACS Symposium Series 538, American Chemical Society:
Washington, D.C., 1993.
(
3) Lockhart, J. C. Chemical sensors. In ComprehensiVe Supramo-
lecular Chemistry; Lehn, J.-M., Ed.; Pergamon: New York, 1996; Vol. 1.
(4) (a) Fery-Forgues, S.; Le Bris, M. T.; Guett e´ , J. P.; Valeur, B. J.
Phys. Chem. 1988, 92, 6233. (b) Bourson, J.; Valeur, B. J. Phys. Chem.
1
989, 93, 3871. (c) Bourson, J.; Pouget, J.; Valeur, B. J. Phys. Chem. 1993,
97, 4552. (d) Martin, M. M.; Plaza, P.; Meyer, Y. H.; Badaoui, F.; Bourson,
2
+
ers. Ca forms the most stable complexes in the ground state,
and they show the longest fluorescence lifetimes and highest
fluorescence quantum yields. Assuming comparable rate con-
J.; Lefevre, J.-P.; Valeur, B. J. Phys. Chem. 1996, 100, 6879.
5) (a) Jonker, S. A.; Ariese, F.; Verhoeven, J. W. Recl. TraV. Chim.
(
Pays-Bas 1989, 108, 109. (b) Jonker, S. A.; van Dijk, S. I.; Goubitz, K.;
Reiss, C. A.; Schuddeboom, W.; Verhoeven, J. W. Mol. Cryst. Liq. Cryst.
1990, 183, 273. (c) Jonker, S. A.; Verhoeven, J. W.; Reiss, C. A.; Goubitz,
K.; Heijdenrijk, D. Recl. TraV. Chim. Pays-Bas 1990, 109, 154.
stants of fluorescence deactivation for all the complexes
studied,60 the increase in τf and Φf suggest a decrease in knr
(
6) Huston, M. E.; Haider, K. W.; Czarnik, A. W. J. Am. Chem. Soc.
with increasing complex stability.
1
988, 110, 4460. Huston, M. E.; Engleman, C.; Czarnik, A. W. J. Am.
On the other hand, the second correlation observed favors a
predominantly sterically controlled mechanism being responsible
for the ratio of the conformers formed. And indeed, the increase
in the relative amplitude of the fast component with increasing
cation radius suggests that the equilibrium of conformers in the
ground state is mainly dependent on the size of the cation. The
larger the cation complexed, the higher the relative amplitude
of the weakly fluorescing conformer, the lowest relative
Chem. Soc. 1990, 112, 7054. Czarnik, A. W. Acc. Chem. Res. 1994, 27,
302.
(
7) Alfimov, M. V.; Gromov, S. P.; Lednev, I. K. Chem. Phys. Lett.
1
991, 185, 455. Lednev, I. K.; Ye, T.-Q.; Hester, R. E.; Moore, J. N. J.
Phys. Chem. A 1997, 101, 4966.
(8) Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L.
M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Chem. Soc. ReV. 1992,
1
87. de Silva, A. P.; Gunaratne, H. Q. N.; Kane, A. T. M.; Maguire, G. E.
M. Chem. Lett. 1995, 125.
(9) (a) L e´ tard, J.-F.; Lapouyade, R.; Rettig, W. Pure Appl. Chem. 1993,
65, 1705. (b) L e´ tard, J.-F.; Delmond, S.; Lapouyade, R.; Rettig, W. Recl.
TraV. Chim. Pays-Bas 1995, 114, 517. (c) Mathevet, R.; Jonusauskas, G.;
Rulli e` re, C.; L e´ tard, J.-F.; Lapouyade, R. J. Phys. Chem. 1995, 99, 15709.
(d) L e´ tard, J.-F.; Delmond, S.; Lapouyade, R.; Braun, D.; Rettig, W.;
Kreissler, M. Recl. TraV. Chim. Pays-Bas 1995, 114, 517. (e) Cornelissen-
Gude, C.; Rettig, W.; Lapouyade, R. J. Phys. Chem. A 1997, 101, 9673.
+
amplitude being found in the case of Li .
Regarding the emission behavior of the complexes and the
lack of a detectable CT emission, the excited complexes seem
to be stable. No photoejection or decoordination of the cation
could be observed. The complexes of 1 behave much more
like PET probe complexes than typical ICT probe complexes,
which leads to these analytically very valuable fluorescence
enhancement factors.
(10) Van den Bergh, V.; Meuwis, K.; Boens, N.; De Schryver, F. C.;
Vincent, M.; Gallay, J.; Ameloot, M. Proc. SPIE-Int. Soc. Opt. Eng. 1994,
2137, 782. Meuwies, K.; Boens, N.; de Schryver, F. C.; Ameloot, M.;
Gallay, J.; Vincent, M. J. Phys. Chem. B 1998, 102, 641.
(
11) Fabbrizzi, L.; Poggi, A. Chem. Soc. ReV. 1995, 197. De Santis, G.;
Fabbrizzi, L.; Licchelli, M.; Sardone, N.; Velders, A. H. Chem. Eur. J.
1996, 2, 1243.
Concluding Remarks
(12) Rurack, K.; Bricks, J. L.; Kachkovski, A. D.; Resch, U. J. Fluoresc.
A comparison of the solvent-dependent absorption and
emission properties of amino-substituted BDP dyes revealed that
in a nonpolar solvent such as hexane emission occurs only from
a LE state, whereas in more polar solvents an ultrafast excited-
state charge-transfer reaction from the amino donor to the basic
fluorophore takes place. This results in strong quenching of
the LE emission and the appearance of a bathochromically
shifted emission from a lower lying CT state, both fluorescence
quantum yields being low. The efficient nonradiative deactiva-
tion process can be utilized to construct a very efficient
molecular switch. Protonation as well as complexation blocks
the CT process and switches on the LE emission again; i.e., a
strong increase in LE fluorescence quantum yield and lifetime
1997, 7, 63S. Rurack, K.; Bricks, J. L.; Slominski, J. L.; Resch, U. Dyes
Pigm. 1998, 36, 121.
(13) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley,
A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV. 1997,
9
7, 1515 and references therein.
(14) Siemiarczuk, A.; Grabowski, Z. R.; Krowczinski, A.; Asher, M.;
Ottolenghi, M. Chem. Phys. Lett. 1977, 51, 315.
(
(
15) Siemiarczuk, A.; Ware, W. R. J. Phys. Chem. 1987, 91, 3677.
16) Siemiarczuk, A.; Koput, J.; Pohorille, A. Z. Naturforsch. 1982, 37a,
598.
(17) Okada, T.; Mataga, N.; Baumann, W.; Siemiarczuk, A. J. Phys.
Chem. 1987, 91, 4490.
(
18) Mataga, N.; Nishikawa, S.; Asahi, T.; Okada, T. J. Phys. Chem.
1
1
1
988, 92, 6233.
(19) Lee, S.; Arita, K.; Kajimoto, O.; Tamao, K. J. Phys. Chem. A 1997,
01, 5228.
(20) Wiessner, A.; H u¨ ttmann, G.; K u¨ hnle, W.; Staerk, H.J. Phys. Chem.
3
with very large fluorescence enhancement factors >10 results.
995, 99, 14923.
Time-resolved measurements suggest that, with the exception
(21) Herbich, J.; Kapturkiewicz, A. Chem. Phys. 1993, 170, 221.
(22) Onkelinx, A.; De Schryver, F. C.; Viaene, L.; van der Auweraer,
M.; Iwai, K.; Yamamoto, M.; Ichikawa, M.; Masuhara, M.; Maus, M.;
2
+
of Mg , all the complexes studied exist as two conformers in
solution, which most likely differ in their conformation at the
crown nitrogen.
Rettig, W. J. Am Chem. Soc. 1996, 118, 2892.
(23) Herbich, J.; Kapturkiewicz, A. J. Am Chem. Soc. 1998, 120, 1014.
The crowned BDP dye presented here is an example for a
very efficient CT system that can be transferred to a LE system
by stable cation complexation in polar acetonitrile. Thus, with
dye 1, we present a new design concept for extremely sensitive
(24) Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A.; Cowley, D.
J.; Baumann, W. NouV. J. Chim. 1979, 3, 443.
(
25) Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971.
(26) Shiguza, H.; Ogiwara, T.; Kimura, E. J. Phys. Chem. 1985, 89,
4302.