10.1002/asia.202000394
Chemistry - An Asian Journal
COMMUNICATION
Whitener, Angew. Chem. Int. Ed. 2002, 41, 3223–3227; Angew. Chem.
2002, 114, 3357−3361; b) S. Han, D. R. Anderson, A. D. Bond, H. V. Chu,
R. L. Disch, D. Holmes, J. M. Schulman, S. J. Teat, K. P. C. Vollhardt, G.
D. Whitener, Angew. Chem. Int. Ed. 2002, 41, 3227–3230; Angew. Chem.
2002, 114, 3361–3364; c) N. J. Schuster, D. W. Paley, S. Jockusch, F.
Ng, M. L. Steigerwald, C. Nuckolls, Angew. Chem. Int. Ed. 2016, 55,
13519–13523; Angew. Chem. 2016, 128, 13717–13721; d) N. J.
Schuster, R. H. Sánchez, D. Bukharina, N. A. Kotov, N. Berova, F. Ng,
M. L. Steigerwald, C. Nuckolls, J. Am. Chem. Soc. 2018, 140, 6235–
6239; e) J. Nejedlý, M. Šámal, J. Rybáček, M. Tobrmanová, F. Szydlo,
C. Coudret, M. Neumeier, J. Vacek, J. V. Chocholoušová, M. Buděšínský,
D. Šaman, L. Bednárová, L. Sieger, I. G. Stará, I. Starý, Angew. Chem.
Int. Ed. 2017, 56, 5839–5843; Angew. Chem. 2017, 129, 5933–5937.
[17] D. Nori-shargh, S. Asadzadeh, F.-R. Ghanizadeh, F. Deyhimi, M. M.
Amini, S. Jameh-Bozorghi, THEOCHEM 2005, 717, 41–51.
[18] H. Tanaka, M. Ikenosako, Y. Kato, M. Fujiki, Y. Inoue, T. Mori, Commun.
Chem. 2018, 1, 38.
[19] a) O. E. Weigang, J. A. Turner, P. A. Trouard, J. Chem. Phys. 1966, 45,
1126−1134; b) M. Sapir, E. Vander Donckt, Chem. Phys. Lett. 1975, 36,
108−110.
[20] Y. Yoshida, Y. Nakamura, H. Kishida, H. Hayama, Y. Nakano, H.
Yamochi, G. Saito, CrystEngComm 2017, 19, 3626−3632.
[21] T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101, 1385−1419.
[22] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer,
Chem. Rev. 2005, 105, 3842−3888.
[23] S. Toyota, T. Oki, M. Inoue, K. Wakamatsu, T. Iwanaga, Chem. Lett.
2015, 44, 978–980.
[8]
[9]
Y. Nakakuki, T. Hirose, K. Matsuda, J. Am. Chem. Soc. 2018, 140,
15461−15469.
[24] a) R. H. Martin, M. J. Marchant, Tetrahedron 1974, 30, 347−349; b) R.
H. Janke, G. Haufe, E.-U. Würthwein, J. H. Borkent, J. Am. Chem. Soc.
1996, 118, 6031−6035; c) J. Barroso, J. L. Cabellos, S. Pan, F. Murillo,
X. Zarate, M. A. Fernandez-Herrera, G. Merino, Chem. Commun. 2018,
54, 188−191.
a) B. Valeur, M. N. Berberan-Santos, Molecular Fluorescence: Principles
and Applications, 2nd ed., Wiley-VCH, Weinheim, 2012, chap. 6; b) V.
Gray, D. Dzebo, A. Lundin, J. Alborzpour, M. Abrahamsson, B. Albinsson,
K. Moth-Poulsen, J. Mater. Chem. C 2015, 3, 11111–11121.
[10] a) M. Yoshizawa, J. K. Klosterman, Chem. Soc. Rev. 2014, 43, 1885–
1898; b) M. Nagaoka, E. Tsurumaki, M. Nishiuchi, T. Iwanaga, S. Toyota,
J. Org. Chem. 2018, 83, 5784−5790; c) S. Toyota, M. Yoshikawa, T.
Saibara, Y. Yokoyama, T. Komori, T. Iwanaga, ChemPlusChem 2019,
84, 643−654.
[25] Y. Zhu, X. Guo, Y. Li, J. Wang, J. Am. Chem. Soc. 2019, 141, 5511−5517.
[26] A. Bedi, O. Gidron, Acc. Chem. Res. 2019, 52, 2482–2490.
[27] S. Parsons, H. D. Flack, T. Wagner, Acta Cryst. 2013, B69, 249−259.
[28] Examples of other small organic molecules with high CPL activity. a) K.
Nakamura, S. Furumi, M. Takeuchi, T. Shibuya, K. Tanaka, J. Am. Chem.
Soc. 2014, 136, 5555–5558. (double azahelicene, |glum| = 0.028); b) S.
Sato, A. Yoshii, S. Takahashi, S. Furumi, M. Takeuchi, H. Isobe, Proc.
Nat. Acad. Sci. USA 2017, 114, 13097–13101 (chiral cylinder, 0.152); c)
C. Schaack, L. Arrico, E. Sidler, M. Górecki, L. Di Bari, F. Diederich,
Chem. Eur. J. 2019, 25, 8003–8007 (helicene, 0.025); d) J. Wang, G.
Zhuang, M. Chen, D. Lu, Z. Li, Q. Huang, H. Jia, S. Cui, X. Shao, S. Yang,
P. Du, Angew. Chem. Int. Ed. 2020, 59, 1619–1626; Angew. Chem. 2020,
132, 1636–1643 (anthracene macrocycle, ca. 0.1).
[11] a) E. M. Sánchez-Carnerero, A. R. Agarrabeitia, F. Moreno, B. L. Maroto,
G. Muller, M. J. Ortiz, S. de la Moya, Chem. Eur. J. 2015, 21, 13488–
13500; b) H. Tanaka, Y. Inoue, T. Mori, ChemPhotoChem 2018, 2,
386−402; c) N. Chen, B. Yan, Molecules 2018, 23, 3376; d) Y. Sang, J.
Han,
T.
Zhao,
P.
Duan,
M.
Liu,
Adv.
Mater.
doi.org/10.1002/adma.201900110.
[12] a) A. Fürstner, V. Mamane, J. Org. Chem. 2002, 67, 6264–6267; b) V.
Mamane, P. Hannen, A. Fürstner, Chem. Eur. J. 2004, 10, 4556–4575.
[13] J. Carreras, M. Patil, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2012,
134, 16753–16758.
[29] Y. Sawada, S. Furumi, A. Takai, M. Takeuchi, K. Noguchi, K. Tanaka, J.
Am. Chem. Soc. 2012, 134, 4080−4083.
[14] The low yield of cycloisomerization of 7c to form 4c was mainly attributed
to the formation of an isomeric product.
[30] We also carried out the calculations of 4b (Tables S5 and S7), and
discussed the results in a similar manner to 4a.
[15] B. V. Cheney, J. Am. Chem. Soc. 1968, 90, 5386−5390.
[16] a) E. D. Becker, High Resolution NMR: Theory and Chemical
Applications, 3rd ed. Academic Press, San Diego, 2000, chap. 8.3; b) J.
Brison, C. de Bakker, N. Defay, F. Geerts-Evrard, M.-J. Marchant, R. H.
Martin, Bull. Soc. Chim. Belg. 1983, 92, 901−912.
[31] a) J. A. Schellman, Chem. Rev. 1975, 75, 323−331; b) F. S. Richardson,
J. P. Riehl, Chem. Rev. 1977, 77, 773−792.
6
This article is protected by copyright. All rights reserved.