Macromolecules
Article
The authors thank TU Graz/NAWI Graz for the use of the
LFP equipment. The authors also thank TU Wien for support
in the framework of Lion 2+.
CONCLUSIONS
■
We have introduced a new concept to control the polymer
network formation in the radical photopolymerization of
dimethacrylates. A mono- and difunctional β-allyl sulfone
were successfully synthesized. The AFCT mechanism and
reactivity were investigated by LFP, employing the monofunc-
REFERENCES
■
(1) Fouassier, J.-P. Photoinitiation, Photopolymerization, and Photo-
curing: Fundamentals and Applications; Hanser: Munich, 1995; p 388 ff.
(2) Studer, K. Coating 2007, 40 (9), 33−37.
1
tional β-allyl sulfone. Additionally, photo-DSC and H NMR
spectroscopic experiments with a monofunctional β-allyl
sulfone-based methacrylate formulation were conducted. With
the help of those mechanistic studies a CT step paving the way
for regulated structures and contributing no significant reaction
heat was confirmed. Moreover, it was shown that β-allyl
sulfones are good AFCT reagents for methacrylate systems
because their addition rate constants are in the same order of
magnitude and β-scission is the major pathway for the CT step.
The synthesized β-allyl sulfone/dimethacrylate networks have
been evaluated toward their photoreactivity (photo-DSC),
thermal and mechanical properties (DMTA), and swellability.
As expected, the photoreactivity is slightly reduced by the
addition of β-allyl sulfones as AFCT reagents. However, the
photopolymerization times are still acceptable, prolonging the
polymerization only by a factor of <2 for 25 DB monofunc-
tional MAS added to the dimethacrylate formulation. The
double-bond conversion in dimethacrylate networks could be
improved, which was confirmed by photo-DSC. It was shown
that the thermal and mechanical properties of the resulting
polymers can be tuned by changing content and functionality of
the AFCT reagent. An increasing content of AFCT reagent in a
monomer formulation resulted in more homogeneous net-
works leading to a decrease in Tg (148 °C → 83−39 °C) and
significant sharpening of the glass transition (>50 °C → 33−25
°C) of the formed polymer network. Swellability tests have
elucidated the relationship between gel fraction, swellability,
and network density. β-Allyl sulfone/dimethacrylate networks
have lower network density (S = 5.9−22.4 wt %) compared to
the corresponding pure dimethacrylate networks (S = 3−6 wt
%) but still represent a significantly high gel fraction (>98% for
DAS and >93% for MAS). Generally, β-allyl sulfone-based
dimethacrylate networks could potentially lead to a number of
favorable properties such as low shrinkage stress, high impact
resistance, or the ability of acting as covalent adaptable
networks (e.g., shape memory polymers). Those assumptions
and a comparison with similar thiol−ene networks will be
addressed with conclusive studies in the near future.
(3) Abe, Y. DIC Technol. Rev. 2005, 11, 1−20.
(4) Fleischer, J. E. Mod. Paint Coat. 2001, 91 (4), 21−22 25..
(5) Parrott, M. C.; Luft, J. C.; Byrne, J. D.; Fain, J. H.; Napier, M. E.;
DeSimone, J. M. J. Am. Chem. Soc. 2010, 132 (50), 17928−17932.
(6) Dworak, C.; Koch, T.; Varga, F.; Liska, R. J. Polym. Sci., Part A:
Polym. Chem. 2010, 48 (13), 2916−2924.
(7) Mautner, A.; Qin, X.; Kapeller, B.; Russmueller, G.; Koch, T.;
Stampfl, J.; Liska, R. Macromol. Rapid Commun. 2012, 33 (23), 2046−
2052.
(8) Mautner, A.; Qin, X.; Wutzel, H.; Ligon, S. C.; Kapeller, B.;
Moser, D.; Russmueller, G.; Stampfl, J.; Liska, R. J. Polym. Sci., Part A:
Polym. Chem. 2013, 51 (1), 203−212.
(9) Fedorovich, N. E.; Swennen, I.; Girones, J.; Moroni, L.; van
Blitterswijk, C. A.; Schacht, E.; Alblas, J.; Dhert, W. J. A.
Biomacromolecules 2009, 10 (7), 1689−1696.
(10) Husar, B.; Heller, C.; Schwentenwein, M.; Mautner, A.; Varga,
F.; Koch, T.; Stampfl, J.; Liska, R. J. Polym. Sci., Part A: Polym. Chem.
2011, 49 (23), 4927−4934.
(11) Torgersen, J.; Ovsianikov, A.; Mironov, V.; Pucher, N.; Qin, X.;
Li, Z.; Cicha, K.; Machacek, T.; Liska, R.; Jantsch, V.; Stampfl, J. J.
Biomed. Opt. 2012, 17 (10), 105008/1−105008/10.
(12) Torgersen, J.; Qin, X.-H.; Li, Z.; Ovsianikov, A.; Liska, R.;
Stampfl, J. Adv. Funct. Mater. 2013, 23 (36), 4542−4554.
(13) Liska, R.; Schwager, F.; Cano-Vives, R.; Stampfl, J. Polym. Prepr.
2004, 45 (2), 77−78.
(14) Yakacki, C. M.; Shandas, R.; Safranski, D.; Ortega, A. M.;
Sassaman, K.; Gall, K. Adv. Funct. Mater. 2008, 18 (16), 2428−2435.
(15) Moad, G.; Rizzardo, E.; Thang, S. H. Polymer 2008, 49 (5),
1079−1131.
(16) Yagci, Y.; Reetz, I. React. Funct. Polym. 1999, 42 (3), 255−264.
(17) Bowman, C. N.; Fairbanks, B. D.; Cramer, N. B.; Anseth, K. S.
Polym. Prepr. 2010, 51 (2), 703−704.
(18) Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49
(9), 1540−1573.
(19) Hoyle, C. E.; Lee, T. Y.; Roper, T. J. Polym. Sci., Part A: Polym.
Chem. 2004, 42 (21), 5301−5338.
(20) An, L.; Gao, C.; Yan, X.; Fu, Z.; Yang, W.; Shi, Y. Colloid Polym.
Sci. 2012, 290 (8), 719−729.
(21) Meijs, G. F.; Rizzardo, E.; Thang, S. H. Polym. Bull. 1990, 24
(5), 501−505.
ASSOCIATED CONTENT
* Supporting Information
LFP spectrum of tosyl radical; photo-DSC plots for DEGEMA
and 2M networks; viscosity information for storage stability.
This material is available free of charge via the Internet at
(22) Park, H. Y.; Kloxin, C. J.; Abuelyaman, A. S.; Oxman, J. D.;
Bowman, C. N. Macromolecules 2012, 45 (14), 5640−5646.
(23) Hutson, L.; Krstina, J.; Moad, C. L.; Moad, G.; Morrow, G. R.;
Postma, A.; Rizzardo, E.; Thang, S. H. Macromolecules 2004, 37 (12),
4441−4452.
■
S
(24) Sato, E.; Uehara, I.; Horibe, H.; Matsumoto, A. Macromolecules
2014, 47 (3), 937−943.
(25) Popielarz, R. J. Polym. Sci., Part A: Polym. Chem. 1996, 34 (17),
3471−3484.
AUTHOR INFORMATION
Corresponding Author
■
(26) Tanaka, K.; Yamada, B. Macromol. Chem. Phys. 2000, 201 (14),
1565−1573.
(27) Nair, D. P.; Cramer, N. B.; Scott, T. F.; Bowman, C. N.;
Shandas, R. Polymer 2010, 51 (19), 4383−4389.
(28) Kloxin, C. J.; Bowman, C. N. Chem. Soc. Rev. 2013, 42 (17),
7161−7173.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(29) Harvey, I. W.; Phillips, E. D.; Whitham, G. H. Tetrahedron 1997,
53 (18), 6493−6508.
Financial support by the Christian Doppler Research
Association, the company Ivoclar Vivadent AG (Liechtenstein),
and the P2M network of the ESF is gratefully acknowledged.
(30) Edwards, G. L.; Muldoon, C. A.; Sinclair, D. J. Tetrahedron
1996, 52 (22), 7779−7788.
I
dx.doi.org/10.1021/ma501550b | Macromolecules XXXX, XXX, XXX−XXX