J. Sun et al. / Polyhedron 30 (2011) 1953–1959
[6] M.J. Hannon, Chem. Soc. Rev. 36 (2007) 280.
1959
shown that the DNA molecule is an electron-donor and the inter-
[
[
[
7] A.E. Friedman, J.C. Chambron, J.P. Sauvage, N.J. Turro, J.K. Barton, J. Am. Chem.
Soc. 112 (1990) 4960.
8] A.E. Friedman, C.V. Kumar, N.J. Turro, J.K. Barton, Nucl. Acids Res. 19 (1991)
2595.
calated complex is an electron-acceptor. Therefore, the factors
affecting the DNA-binding affinities of the complex can usually
be considered from the planarity and plane area of the main ligand,
and the energy and population of the lowest unoccupied molecular
orbital (LUMO, and even LUMO + x, x = 1, 2, 3) of the complex mol-
ecule. A lower LUMO (and LUMO + x) energy of the complex easily
accepts electrons from the HOMO (and HOMO ꢀ x) of the DNA
base-pairs and the more population of the LUMO (and LUMO + x)
on the intercalative ligand is advantageous to the orbital interac-
tion between the LUMO (and LUMO + x) of the complex and the
HOMO (and HOMO ꢀ x) of DNA according to frontier molecular
orbital theory [53,54].
9] R.M. Hartshorn, J.K. Barton, J. Am. Chem. Soc. 114 (1992) 5919.
[
10] S.P. Foxon, C. Metcalfe, H. Adams, M. Webb, J.A. Thomas, Inorg. Chem. 46
2007) 409.
[11] V. Rajendiran, M. Murali, E. Suresh, S. Sinha, K. Somasundaram, M.
Palaniandavar, J. Chem. Soc., Dalton Trans. (2008) 148.
(
[
[
12] A. Ambroise, B.G. Maiya, Inorg. Chem. 39 (2000) 4264.
13] B.Y. Wu, L.H. Gao, Z.M. Duan, K.Z. Wang, J. Inorg. Biochem. 99 (2005) 1685.
[14] N. Nickita, M.J. Belousoff, A.I. Bhatt, A.M. Bond, G.B. Deacon, G. Gasser, L.
Spiccia, Inorg. Chem. 46 (2007) 8638.
15] J. Sun, S. Wu, Y. Han, J. Liu, L.N. Ji, Z.W. Mao, Inorg. Chem. Commun. 11 (2008)
382.
[16] X.H. Zou, B.H. Ye, H. Li, Q.L. Zhang, H. Chao, J.G. Liu, L.N. Ji, X.Y. Li, J. Biol. Inorg.
Chem. 6 (2001) 143.
17] J. Sun, Y. An, L. Zhang, Y. Han, H.Y. Chen, Y.J. Wang, Z.W. Mao, L.N. Ji, J. Inorg.
Biochem. 105 (2011) 149.
[18] J.K. Barton, A.T. Danishefsky, G.M. Goldberg, J. Am. Chem. Soc. 106 (1984)
2172.
[
1
Since complexes 1 and 2 have the same main ligand, dppz, the
planarity area of the main ligand in each case is equal. The energy
and population of the lowest unoccupied molecular orbital (LUMO,
even and LUMO + x) of the molecule can be considered as the main
factor affecting the DNA-binding affinities of the complexes. In fact,
we can see that the related frontier MO contour plots of the two
title complexes are very alike from Fig. 7, the LUMO (and LU-
MO + x) of complexes 1 and 2 are mostly distributed on the ancil-
lary ligands, and thus their LUMO (and LUMO + x) should play an
important role in accepting electrons from base pairs of DNA. From
Table 2 and Fig. 6, we can clearly see that the order of the energies
[
[
[
19] J. Marmur, J. Mol. Biol. 3 (1961) 208.
20] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
[21] Y. An, Y.Y. Lin, H. Wang, H.Z. Sun, M.L. Tong, L.N. Ji, Z.W. Mao, J. Chem. Soc.,
Dalton Trans. (2006) 2066.
[
[
22] W. Paw, R. Eisenberg, Inorg. Chem. 36 (1997) 2287.
23] C.M. Dupureur, J.K. Barton, Inorg. Chem. 36 (1997) 33.
[24] G. Albano, P. Belser, C. Daul, Inorg. Chem. 40 (2001) 1408.
[
[
[
25] J.B. Chaires, N. Dattagupta, D.M. Crothers, Biochemistry 21 (1982) 3933.
26] G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 45.
27] P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.
of the LUMO (and LUMO + x) of the two complexes are
and L+x (2) > L+x (1). Since lower energies of the LUMO and LU-
MO + x must be advantageous to accepting the electrons of the
HOMO of DNA in the interaction based on the frontier MO the-
ory, the experimental trend in the DNA-binding constants (K ), i.e.
(1) > K (2), can be reasonably explained.
L L
e (2) > e (1)
e
e
[28] A.D. Becke, J. Chem. Phys. 98 (1993) 1372.
[
[
29] A. Görling, Phys. Rev. A 54 (1996) 3912.
30] J.B. Foresman, A.E. Frisch, In Exploring Chemistry with Electronic Structure
Methods, second ed., Gaussian Inc., PA, Pittsburgh, 1996.
p–p
b
[31] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270.
[
[
32] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
33] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A.V. Zelewsky, Coord.
Chem. Rev. 84 (1988) 85.
K
b
b
4
. Conclusion
In this paper, we studied the DNA-binding and photocleavage
[34] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T.V. Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision D.01,Gaussian, Inc., Wallingford CT, 2005.
properties of two Ru(II) complexes with two main ligands and
one ancillary ligand. The results indicate that complex 1 has a
greater DNA affinity than 2. Moreover, complex 1 can strongly bind
to CT-DNA through intercalation, while 2 binds to DNA in a partial
intercalative mode. When irradiated at 365 nm, the two Ru(II)
complexes efficiently photocleave plasmid pBR 322 DNA. Applying
DFT/TDDFT calculations and frontier molecular orbital theory, the
trend in DNA-binding affinities, can be reasonably explained.
[
[
35] G. Schaftenaar, J.H. Noordik, J. Comput.-Aided Mol. Des. 14 (2000) 123.
36] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.
Chem. Soc. 111 (1989) 3051.
Acknowledgements
[
[
37] L.F. Tan, X.L. Liang, X.H. Liu, J. Inorg. Biochem. 103 (2009) 441.
38] J. Talib, D.G. Harman, C.T. Dillon, J. Aldrich-Wright, J.L. Becka, S.F. Ralph, J.
Chem. Soc., Dalton Trans. (2009) 504.
This work was supported by the National Natural Science
Foundation of China (Nos. 30770494, 20725103, 20831006 and
[
39] R.B. Nair, E.S. Teng, S.L. Kirkland, C.J. Murphy, Inorg. Chem. 37 (1998) 139.
2
0821001), the Guangdong Provincial Natural Science Foundation
[40] L.M. Chen, J. Liu, J.C. Chen, C.P. Tan, S. Shi, K.C. Zheng, L.N. Ji, J. Inorg. Biochem.
02 (2008) 330.
1
(
No. 9351027501000003), National Basic Research Program of
[
[
41] M.T. Carter, M. Rodriguez, A.J. Bard, J. Am. Chem. Soc. 111 (1989) 8901.
42] P. Uma Maheswari, M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219.
China (973 Program No. 2007CB815306) and the Doctoral Program
of Guangdong Medical College (B2009003).
[43] S. Shi, Xi.T. Geng, J. Zhao, T.M. Yao, C.R. Wang, D.J. Yang, L.F. Zheng, L.N. Ji,
Biochimie 92 (2010) 370.
[
44] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 31 (1992) 9319.
[45] J.D. McGhee, P.H. Von Hippel, J. Mol. Biol. 86 (1974) 469.
46] C.V. Kumar, J.K. Barton, N.J. Turro, J. Am. Chem. Soc. 107 (1985) 5518.
[47] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 32 (1993) 2573.
48] J.G. Liu, B.H. Ye, H. Li, Q.X. Zhen, L.N. Ji, Y.H. Fu, J. Inorg. Biochem. 76 (1999)
65.
Appendix A. Supplementary data
[
1H NMR spectra of dppz, complex 2 and their assignments (Figs.
S1, S2, S3) are included as supplementary materials. Supplemen-
[
2
[49] S. Shi, J. Liu, J. Li, K.C. Zheng, C.P. Tan, L.M. Chen, L.N. Ji, J. Chem. Soc., Dalton
Trans. (2005) 2038.
[
[
50] D.S. Sigman, Acc. Chem. Res. 19 (1986) 180.
51] B. Armitage, Chem. Rev. 98 (1998) 1171.
References
[52] K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20 (1952) 722.
[
[
53] G. Klopman, J. Am. Chem. Soc. 90 (1968) 223.
54] I. Fleming, Frontier Orbital and Organic Chemical Reaction, Wiley, New York,
[
[
[
[
[
1] K.E. Erkkila, D.T. Odom, J.K. Barton, Chem. Rev. 99 (1999) 2777.
2] L.N. Ji, X.H. Zou, J.G. Liu, Coord. Chem. Rev. 216–217 (2001) 513.
3] J.G. Vos, J.M. Kelly, J. Chem. Soc., Dalton Trans. (2006) 4869.
4] Y. Xiong, L.N. Ji, Coord. Chem. Rev. 185–186 (1999) 711.
5] C. Metcalfe, J.A. Thomas, Chem. Soc. Rev. 32 (2003) 215.
1976.
[
[
55] N. Kurita, K. Kobayashi, Comput. Chem. 24 (2000) 351.
56] D. Reha, M. Kabelac, F. Ryjacek, J. Sponer, J.E. Sponer, M. Elstner, S. Suhai, P.
Hobza, J. Am. Chem. Soc. 124 (2002) 3366.