CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS
DOI: 10.1039/C5CC01938A
www.rsc.org/xxxxxx | XXXXXXXX
Page 3 of 3
ARTICLE TYPE
ChemComm
show a ~ 52±2 mV/pH unit change between pH 4-10 (Fig. 6B) Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S.
indicating the involvement of a single proton coupled electron
transfer potential determining step.
Yoshikawa, Science, 1995, 269, 1069-1074.
7
2
. J. P. Collman, R. Boulatov, C. J. Sunderland, L. Fu, Chem. Rev.
004, 104, 561-588.
5
0
5
0
5
0
5
0
5
0
6
5
0
5
8. P. L. Dutton, D. F. Wilson, C.-P. Lee, Biochemistry, 1970, 9,
5
9
077-5082.
. A. Bhagi-Damodaran, I. D. Petrik, N. M. Marshall, H. Robinson
Y. Lu, J. Am. Chem. Soc., 2014, 136, 11882-11885.
10. W. S. Caughey, G. A. Smythe, D. H. O'Keeffe, J. E.Maskasky, M.
I. Smith, J. Biol. Chem., 1975, 250, 7602-7622.
1
1
2
2
3
3
4
4
5
7
1
1.S. Chatterjee, K. Sengupta, S. Samanta, P. K. Das and A. Dey,
Inorg. Chem., 2013, 52, 9897-9907.
2.S. Samanta, K. Sengupta, K. Mittra, S. Bandyopadhyay A. Dey,
1
Fig. 6 A) LSV of the catalyst deposited on EPG surface at different
Chem. Commun , 2012, 48, 7631-7633.
pH. B) Catalytic half peak potential (E) vs. pH fitted with a line 7
13. S. Samanta, P. K. Das, S. Chatterjee, K. Sengupta, B. Mondal, A.
Dey, Inorg. Chem., 2013, 52, 12963-12971.
having a slope of 52 mV/pH.
In rotating ring disc electrochemistry (RRDE) partially reduced
oxygen species (PROS) produced on the working electrode is
detected on a Pt ring electrode, which is held at a potential (0.7 V)
1
4. K. Sengupta, S. Chatterjee, S. Samanta A. Dey, Proc. Natl. Acad.
Sci., 2013, 110, 8431-8436.
where it can oxidize the PROS produced from O2 and this 15. E. Kim, E. E. Chufán, K. Kamaraj, K. D. Karlin, Chem. Rev.
oxidation current can be used for the quantitative determination of 80 2004, 104, 1077-1134.
the amount of PROS generated during O reduction. Fe-PP-diester 16.C. T. Carver, B. D. Matson, J. M. Mayer, J. Am. Chem. Soc., 2012,
produces about 1±0.5% PROS at pH 7 when physiadsorbed on
EPG (S31). Note that it is unlikely that such high selectivity for
ORR can be obtained by an iron porphyrin complex having only
one iron. It is likely that deposition of multilayers of this complex 85
on the graphite surface allows facile bimetallic catalysis as is
known to be the case for porphyrin and corroles lacking distal
2
3
4, 5444-5447.
1
7. J. P. Collman, N. K. Devaraj, R. A. Decréau, Y. Yang, Y.-L.
Yan, W. Ebina, T. A. Eberspacher and C. E. D. Chidsey, Science,
2007, 315, 1565-1568.
1
8. Z. Halime, H. Kotani, Y. Li, S. Fukuzumi, K. D. Karlin, Proc
3
0-32
Natl. Acad. Sci., 108, 13990-13994.
super-structures which inhibit dimer formation.
1
9.E. E. Chufãn, S. C. Puiu, K. D. Karlin, Acc. Chem. Res., 2007, 40,
In summary, inclusion of two electron withdrawing ester groups
in the β-pyrrolic position of tetraphenylporphyrin, similar to the
5
63-572.
electron withdrawing formyl groups present in the β-pyrrolic 90 20. B. Sun, Z. Ou, D. Meng, Y. Fang, Y. Song, W. Zhu, P. V.Solntsev,
position of heme a , induces a ~200 mV positive shift in the formal V. N. Nemykin, K. M. Kadish, Inorg. Chem., 53, 8600-8609.
3
III/II
Fe
potential in both organic and aqueous medium. The onset 21. K. Mittra, S. Chatterjee, S. Samanta and A. Dey, Inorg. Chem., 52,
potential of ORR is also found to shift by ~200 mV relative to an
unsubstituted porphyrin. These data indicate that 1) the two ester
1
2
4317-14325.
2. J. P. Collman, R. A. Decreau, Chem. Commun., 2008, 5065-5076.
III/II
0
substituents on heme a can shift the formal Fe E by ~200 mV 95
relative to heme and 2) substituting the β-pyrrolic positions with
additional electron withdrawing ester/formyl groups may be
explored to reduce the significant overpotential involved in
electrocatalytic ORR by, otherwise efficient (stable and fast), iron
23. S. Samanta, K. Mittra, K. Sengupta, S. Chatterjee and A. Dey,
Inorg. Chem., 2013, 52, 1443-1453.
2
4. M. W. Grinstaff, M. G. Hill, E. R. Birnbaum, W. P. Schaefer, J. A.
Labinger, H. B. Gray, Inorg. Chem., 1995, 34, 4896-4902.
5.a)A. Mahammed, B. Mondal, A. Rana, A. Dey, Z. Gross
2
porphyrin electrocatalysts.
100 Chem. Commun., 2014, 50, 2725,b)A Schechter, M tanevsky, A.
Acknowledgement
Mahammed, Z Gross, Inorg.chem., 2011,51, 22-24 c)E. Steene, A.
The work is funded by DST (SB/S1/IC-25-2013). S.A. and P.K.D. Dey, A. Ghosh, J. Am. Chem. Soc., 2003, 125,6300-16309.
acknowledge CSIR-JRF and SRF fellowship respectively. S.S 26. J. P. Collman, M. Kaplun and R. A. Decreau, Dalton Trans., 2006,
acknowledges the Integrated Ph.D. Program of IACS.
5
54-559.
1
1
1
05 27. a) K. M. Kadish, L. Frãmond, Z. Ou, J. Shao, C. Shi, F. C. Anson,
References
F. Burdet, C. P. Gros, J.-M. Barbe and R. Guilard, J. Am. Chem. Soc.,
1
2
3
1
. B. Chance, J. Gen. Physiol., 1965, 49, 163-188.
. G. T. Babcock, M. Wikstrom, Nature, 1992, 356, 301-309.
. J. A. Cracknell, K. A. Vincent, F. A. Armstrong, Chem. Rev., 2008,
08, 2439-2461.
2
005, 127, 5625-5631.b)F. D'Souza , A. Villard , E. V. Caemelbecke,
M. Franzen , T. Boschi , P.. Tagliatesta, K. M. Kadish, Inorg. Chem.,
993, 32, 4042-4048
10 28. M. Gałęzowski, D. T. Gryko, J. Org. Chem., 2006, 71,5942-5950.
1
5
5
4. K. Muramoto, K. Ohta, K. Shinzawa-Itoh, K. Kanda, M. Taniguchi,
H. Nabekura, E. Yamashita, T. Tsukihara, S. Yoshikawa, Proc.
Natl. Acad. Sci., 2010, 107, 7740-7745.
2
3
3
3
9. P. Chang and C. R. Wilke, J. Phys. Chem., 1955, 59, 592-596.
0. C. Shi, B. Steiger, M. Yuasa, F. C. Anson, Inorg. Chem., 1997,
6, 4294-4295.
5
. S. Ferguson-Miller and G. T. Babcock, Chem. Rev., 1996, 96, 2889
1. E. Song, C. Shi, F. C. Anson, Langmuir, 1998, 14, 4315-4321.
-
2908.
15 32. S. Chatterjee, K. Sengupta, S. Samanta, P. K. Das, A. Dey, Inorg.
Chem., 2015, 54, 2383-2392.
6
0
6. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 |3