Communication
ChemComm
12 M. Lepage, W. C. Dow, M. Melchior, Y. You, B. Fingleton,
luminescent tools, that could be used for the activation of the CA,
are luciferin/luciferase systems, which have been optimized for
in vivo bioluminescence imaging42,43 or horseradish peroxidase,
which has been expressed in mammalian cells and explored for
local prodrug activation in vivo.44 Altogether, this method may be
useful to reduce the side effects in systemic chemotherapy for the
treatment of localized malignant disease.
For the clinical development of the CA reported here, it is
crucial to shift the activation wavelength to 4600 nm, to maximize
tissue penetration and reduce light-associated toxicity.18 Recent
developments in green and red light-responsive photocaging
groups offer efficient activation within a clinical setting.45–48
With regards to the use of our system for MRI guided drug
delivery, a bathochromic shift in activation wavelength would
open up the possibility to use clinically established light delivery
systems,49–51 commonly used in PDT or photothermal therapies,
for triggering the drug release.
´
C. C. Quarles, C. Pepin, J. C. Gore, L. M. Matrisian and
J. O. McIntyre, Mol. Imaging, 2007, 6, 393–403.
13 A. Louie, J. Magn. Reson. Imaging, 2013, 38, 530–539.
14 J. Lux and A. D. Sherry, Curr. Opin. Chem. Biol., 2018, 45, 121–130.
15 K. D. Verma, J. O. Massing, S. G. Kamper, C. E. Carney,
K. W. MacRenaris, J. P. Basilion and T. J. Meade, Chem. Sci., 2017,
8, 5764–5768.
16 K. W. MacRenaris, Z. Ma, R. L. Krueger, C. E. Carney and
T. J. Meade, Bioconjugate Chem., 2016, 27, 465–473.
17 Y. Tang, X. Lu, C. Yin, H. Zhao, W. Hu, X. Hu, Y. Li, Z. Yang, F. Lu,
Q. Fan and W. Huang, Chem. Sci., 2019, 10, 1401–1409.
18 R. Weissleder and V. Ntziachristos, Nat. Med., 2003, 9, 123–128.
19 W. A. Velema, W. Szymanski and B. L. Feringa, J. Am. Chem. Soc.,
2014, 136, 2178–2191.
20 F. Reeßing and W. Szymanski, Curr. Med. Chem., 2018, 24, 4905–4950.
21 C. A. Robertson, D. H. Evans and H. Abrahamse, J. Photochem.
Photobiol., B, 2009, 96, 1–8.
22 L. Fenno, O. Yizhar and K. Deisseroth, Annu. Rev. Neurosci., 2011, 34,
389–412.
23 F. Reebing and W. Szymanski, Curr. Opin. Biotechnol., 2019, 58, 9–18.
24 P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev.,
1999, 99, 2293–2352.
The financial support from the Dutch Organization for
Scientific Research (VIDI grant no. 723.014.001 for W. S.), the
Dutch Cancer Society (grant RUG2014-6986 for W. H.) and the
Dutch Ministry of Education, Culture and Science (Gravitation
program 024.001.035 for B. L. F.) is gratefully acknowledged.
´
´
25 C. S. Bonnet and E. Toth, Chim. Int. J. Chem., 2016, 70, 102–108.
26 V. Catanzaro, C. V. Gringeri, V. Menchise, S. Padovan, C. Boffa,
W. Dastru`, L. Chaabane, G. Digilio and S. Aime, Angew. Chem., Int.
Ed., 2013, 52, 3926–3930.
27 S. Aime, F. Fedeli, A. Sanino and E. Terreno, J. Am. Chem. Soc., 2006,
128, 11326–11327.
´
28 W. Szymanski, W. A. Velema and B. L. Feringa, Angew. Chem., Int.
¨
We thank Ms Verena Bohmer for helpful discussions, eng.
Ed., 2014, 53, 8682–8686.
29 C. Tu, E. A. Osborne and A. Y. Louie, Tetrahedron, 2009, 65, 1241–1246.
30 C. Tu and A. Y. Louie, Chem. Commun., 2007, 1331.
Theodora D. Tiemersma-Wegman for MS analysis, eng. Hans
van der Velde for ICP-OES analysis, Pieter van der Meulen for
help with determination of relaxivity at 4.7 T and Mark A. J. M.
Hendriks for the macrophages cytotoxicity assay.
¨
31 G. Heitmann, C. Schu¨tt, J. Grobner, L. Huber and R. Herges, Dalton
Trans., 2016, 45, 11407–11412.
´ˇ
ˇ
32 P. Hermann, J. Kotek, V. Kubıcek and I. Lukes, Dalton Trans., 2008,
3027.
33 T. Kanda, M. Osawa, H. Oba, K. Toyoda, J. Kotoku, T. Haruyama,
K. Takeshita and S. Furui, Radiology, 2015, 275, 803–809.
34 A. Barge, G. Cravotto, E. Gianolio and F. Fedeli, Contrast Media Mol.
Imaging, 2006, 1, 184–188.
35 J. N. Weinstein, S. Yoshikami, P. Henkart, R. Blumenthal and
W. A. Hagins, Science, 1977, 195, 489–492.
Conflicts of interest
The authors declare no conflict of interests.
36 T. Shimanouchi, P. Walde, J. Gardiner, Y. R. Mahajan, D. Seebach,
Notes and references
¨
A. Thomae, S. D. Kramer, M. Voser and R. Kuboi, Biochim. Biophys.
1 D. Hao, T. Ai, F. Goerner, X. Hu, V. M. Runge and M. Tweedle,
J. Magn. Reson. Imaging, 2012, 36, 1060–1071.
2 J. Lohrke, T. Frenzel, J. Endrikat, F. C. Alves, T. M. Grist, M. Law,
Acta, Biomembr., 2007, 1768, 2726–2736.
37 W. Deng, W. Chen, S. Clement, A. Guller, Z. Zhao, A. Engel and
E. M. Goldys, Nat. Commun., 2018, 9, 2713.
J. M. Lee, T. Leiner, K.-C. Li, K. Nikolaou, M. R. Prince, H. H. Schild, 38 K. E. Roberts, A. K. O’Keeffe, C. J. Lloyd and D. J. Clarke, J. Fluoresc.,
J. C. Weinreb, K. Yoshikawa and H. Pietsch, Adv. Ther., 2016, 33,
1–28.
2003, 13, 513–517.
39 S. Lacerda and E. Toth, ChemMedChem, 2017, 12, 883–894.
´
´
´
´
3 J. Garcia, S. Z. Liu and A. Y. Louie, Philos. Trans. R. Soc., A, 2017, 40 A. Sour, S. Jenni, A. Ortı-Suarez, J. Schmitt, V. Heitz, F. Bolze,
´
´
375, 20170180.
P. Loureiro de Sousa, C. Po, C. S. Bonnet, A. Pallier, E. Toth and
B. Ventura, Inorg. Chem., 2016, 55, 4545–4554.
41 M. de Smet, S. Langereis, S. van den Bosch and H. Gru¨ll,
J. Controlled Release, 2010, 143, 120–127.
42 T. Xu, D. Close, W. Handagama, E. Marr, G. Sayler and S. Ripp,
Front. Oncol., 2016, 6, 150.
´
´
4 J. Wahsner, E. M. Gale, A. Rodrıguez-Rodrıguez and P. Caravan,
Chem. Rev., 2019, 119, 957–1057.
5 E. Boros, E. M. Gale and P. Caravan, Dalton Trans., 2015, 44,
4804–4818.
6 F. OukhatarukhatMeudal, C. Landon, N. K. Logothetis, C. Platas-
´
´
Iglesias, G. Angelovski and E. Toth, Chem. – Eur. J., 2015, 21, 43 D. M. Close, S. S. Patterson, S. Ripp, S. J. Baek, J. Sanseverino and
11226–11237. G. S. Sayler, PLoS One, 2010, 5, e12441.
7 K. Overoye-Chan, S. Koerner, R. J. Looby, A. F. Kolodziej, S. G. Zech, 44 J. Tupper, M. R. Stratford, S. Hill, G. M. Tozer and G. U. Dachs,
Q. Deng, J. M. Chasse, T. J. McMurry and P. Caravan, J. Am. Chem.
Soc., 2008, 130, 6025–6039.
Cancer Gene Ther., 2010, 17, 420–428.
45 K. Sitkowska, B. L. Feringa and W. Szymanski, J. Org. Chem., 2018,
83, 1819–1827.
´
´
8 L. Helm, A. E. Merbach and E. Toth, The chemistry of contrast agents
in medical magnetic resonance imaging, Wiley, 2nd edn, 2013.
9 P. A. Waghorn, C. M. Jones, N. J. Rotile, S. K. Koerner, D. S. Ferreira,
H. H. Chen, C. K. Probst, A. M. Tager and P. Caravan, Angew. Chem.,
Int. Ed., 2017, 56, 9825–9828.
46 T. Slanina, P. Shrestha, E. Palao, D. Kand, J. A. Peterson,
A. S. Dutton, N. Rubinstein, R. Weinstain, A. H. Winter and
´
P. Klan, J. Am. Chem. Soc., 2017, 139, 15168–15175.
47 X. Wang and J. A. Kalow, Org. Lett., 2018, 20, 1716–1719.
10 D. V. Hingorani, A. S. Bernstein and M. D. Pagel, Contrast Media Mol. 48 N. Rubinstein, P. Liu, E. W. Miller and R. Weinstain, Chem. Com-
Imaging, 2015, 10, 245–265. mun., 2015, 51, 6369–6372.
11 F. A. Rojas-Quijano, G. Tircso, E. Tircsone Benyo, Z. Baranyai, 49 J. M. Silva, E. Silva and R. L. Reis, J. Controlled Release, 2019, 298,
´
´ ´
´
´
´
H. Tran Hoang, F. K. Kalman, P. K. Gulaka, V. D. Kodibagkar, 154–176.
S. Aime, Z. Kovacs and A. D. Sherry, Chem. – Eur. J., 2012, 18, 50 L. Brancaleon and H. Moseley, Lasers Med. Sci., 2002, 17, 173–186.
´
9669–9676.
51 M. A. Calin and S. V. Parasca, Lasers Med. Sci., 2009, 24, 453–460.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019