9084 J . Org. Chem., Vol. 65, No. 26, 2000
J ensen et al.
M solution of AlMe3 in hexane (20 µL, 0.04 mmol) whereupon
the solution turned yellow under the evolution of CH4.7f The
solution was stirred for 1 h, and nitrone 1 (0.2 mmol) was
added together with 4 equiv of the vinyl ethers 2 (1.6 mmol)
and pet. ether (0.5 mL). After the appropriate reaction time,
the reaction was quenched with MeOH (0.2 mL) and filtered
through a 20 mm plug of silica. The silica was washed with
5% MeOH in CH2Cl2 (5 mL), and the combined fractions were
evaporated. The crude product from 1,3-dipolar cycloaddition
reactions of 3,4-dihydroisoquinoline N-oxide 1a with vinyl
ethers 2a -c was purified by FC (silica gel, pet. ether/Et2O,
70:30) to give the single diasteromer of 3. Generally, the endo-
isomers appeared with lower Rf values than the exo-isomers
(∆Rf ) 0.1). The crude product from the 1,3-dipolar cycloaddi-
tion reactions of 6,7-dimethoxy-3,4-dihydroisoquinoline N-
oxide 1b with vinyl ethers 2a ,b was purified by FC. The ligand
was eluated out first (silica gel, pet. ether/Et2O 70:30), chang-
ing the eluent to CH2Cl2/MeOH, 98:2. The exo-isomer was
eluated out as the first of the two diastereomers (∆Rf ) 0.28).
(-)-(2S,10bS)-2-Eth oxy-1,5,6,10b-tetr a h yd r o-2H-isoxa -
zolo[3,2,-a ]isoqu in olin e (exo-3a ). Synthesized according to
the general procedure on a 0.4 mmol scale with catalyst (R)-
4b (10 mol %): yield 91%; ee ) 77%; yellow oil; [R]D ) 98.7
(c ) 1.0, CHCl3); 1H NMR δ 1.25 (t, J ) 7.1 Hz, 3H), 2.44 (ddd,
J ) 5.5, 8.8, 12.9 Hz, 1H), 2.65 (ddd, J ) 1.1, 6.9, 12.9 Hz,
1H), 2.88 (m, 2H), 3.20 (ddd, J ) 4.6, 7.4, 11.9 Hz, 1H), 3.31
(ddd, J ) 5.5, 5.7, 11.7 Hz, 1H), 3.50 (dq, J ) 7.1, 9.5 Hz, 1H),
3.88 (dq, J ) 7.1, 9.5 Hz, 1H), 4.77 (t, J ) 7.9 Hz, 1H), 5.26 (d,
J ) 5.3 Hz, 1H), 7.08-7.23 (m, 4H); 13C NMR δ 15.0, 26.7,
43.4, 49.6, 60.0, 63.1, 101.5, 126.4, 127.3, 128.1, 133.7, 135.6;
HPLC (Daicel Chiralcel OD, hexane/i-PrOH ) 98:2, flow
rate ) 1.0 mL/min) tR ) 10.5 min (minor), tR )28.7 min
(major); MS m/z 219 (M+). All structural assignments were in
agreement with the MS, 1H, and 13C NMR data available from
the literature.7c,d
1.2, 6.8, 12.4 Hz, 1H), 2.79 (m, 2H), 3.11 (ddd, J ) 4.4, 8.4,
11.2 Hz, 1H), 3.26 (ddd, J ) 4.8, 5.6, 10.4 Hz, 1H), 3.82 (s,
3H), 3.83 (s, 3H), 4.68 (t, J ) 8.4 Hz, 1H), 5.56 (d, J ) 4.8 Hz,
1H), 6.57 (s, 1H), 6.59 (s, 1H); 13C NMR δ 25.7, 27.9, 42.9, 48.5,
54.8, 54.9, 59.1, 73.5, 95.9, 108.9, 109.7, 124.7, 126.3, 146.5,
146.7; HPLC (Daicel Chiralcel OJ , hexane/i-PrOH ) 96:4,
flow rate ) 0.3 mL/min) tR ) 14.1 min (major), tR ) 16.0 min
(minor); TOF ES+ m/z 330 (M + Na)+; HRMS calcd for C17H25
-
NaNO4 330.1681, found 330.1700.
(2,10b)-2-P h en yloxy-1,5,6,10b-tetr ah ydr o-2H-isoxazolo-
[3,2,-a ]isoqu in olin e (exo-3e). Synthesized according to the
general procedure on a 0.4 mmol scale employing catalyst (R)-
1
4b (20 mol %): yield 24%; ee ) 10%; colorless oil; H NMR δ
2.60 (ddd, J ) 5.8, 8.4, 13.6 Hz, 1H), 2.78 (ddd, J ) 5.2, 7.6,
12.8 Hz, 1H), 2.89 (m, 2H), 3.27 (m,32H), 4.83 (t, J ) 6.4 Hz,
1H), 5.82 (d, J ) 4.8 Hz, 1H), 6.90-7.23 (m, 9H); 13C NMR δ
26.3, 43.9, 49.6, 60.1, 100.1, 116.8, 122.0, 126.6, 127.4, 128.3,
129.4, 133.8, 135.3, 156.8; HPLC (Daicel Chiralcel OJ , hexane/
i-PrOH ) 92:8, flow rate ) 0.3 mL/min) tR ) 44.6 min (major),
tR ) 90.3 min (minor). TOF ES+ m/z: 330 (M + Na)+; HRMS
calcd for C18H19NaNO2 290.1157, found 290.1174.
F or m a tion of (1S)-2-Ben zyl-1-eth oxyca r bon ylm eth yl-
6,7-d im eth oxy-1,2,3,4-tetr a h yd r oisoqu in olin e. To a solu-
tion of exo-3b (58% ee, 73.8 mg, 0.264 mmol) in toluene (1 mL)
was added 1.05 equiv of BnBr (33 µL, 0.277 mmol); the flask
was capped and stirred overnight. The reaction was quenched
with saturated NaHCO3 and extracted with Et2O (3 × 2 mL).
The organic layer was dried and the solvent evaporated. The
crude product was purified by FC (silica gel, pet. ether/Et2O,
1
40:60): yield 61%; yellow oil; H NMR δ 1.18 (t, J ) 7.2 Hz,
3H), 2.36 (dd, J ) 3.3, 14.7 Hz, 1H), 2.55 (dd, J ) 5.4, 14.4
Hz, 1H), 2.73-2.9 (m, 3H), 3.10 (ddd, J ) 1.8, 4.8, 13.2 Hz,
1H), 3.65 (d, J ) 13.2 Hz, 1H), 3.72 (d, J ) 13.0, 1H), 3.79 (s,
3H), 3.80 (s, 3H), 4.03 (dq, J ) 7.2, 11.1 Hz, 1H), 4.14 (dq,
J ) 7.2, 10.5 Hz, 1H), 6.53 (s, 1H), 6.54 (s, 1H), 7.18-7.29 (m,
5H); 13C NMR δ 14.1, 23.1, 41.7, 42.0, 55.7, 55.8, 57.4, 58.3,
60.3, 110.1, 111.5, 126.0, 126,9, 128.0, 128.7, 128.8, 139.2,
147.3, 147.6, 171.9; MS m/z 369 (M+).
(+)-(2S,10bS)-2-Eth oxy-8,9-dim eth oxy-1,5,6,10b-tetr ah y-
d r o-2H-isoxa zolo[3,2,-a ]isoqu in olin e (exo-3b). Synthesized
according to the general procedure on a 0.4 mmol scale
employing catalyst (R)-4b (20 mol %): yield 76%; ee ) 70%;
F or m a t ion of (-)-(1S)-1-E t h oxyca r bon ylm et h yl-6,7-
d im eth oxy-1,2,3,4-tetr a h yd r oisoqu in olin e (5). (1S)-2-Ben-
zyl-1-ethoxycarbonylmethyl-6,7-dimethoxy-1,2,3,4-tetrahydroiso-
quinoline (59.5 mg, 0.161 mmol) obtained in the previous
reaction was dissolved in EtOH (3 mL). The reaction vessel
was set under vacuum and flushed with N2. This procedure
was repeated (3×), and 0.75 equiv of Pd(OAc)2 (27 mg, 0.122
mmol) was added. Vacuum was applied, and subsequently the
reaction vessel was flushed with H2 and the mixture was
sonicated for 3 h and filtered through a glass fiber filter and
the residual Pd(OAc)2 washed with EtOH and pyridine. The
combined fractions were concentrated in vacuo and coevapo-
rated with toluene (3×). The residue was purified by FC
(deactivated silica gel, CH2Cl2/MeOH, 90:10): yield 90%;
ee ) 58%; oil [R]D ) -10.2 (c ) 1.0, CHCl3); 1H NMR δ 1.24 (t,
J ) 6.9 Hz, 3H), 2.96-3.20 (m, 2H), 3.33 (ddd, J ) 6.3, 6.3,
12.6 Hz, 1H), 3.45 (ddd, J ) 5.4, 6.0, 11.4 Hz, 1H), 3.83 (s,
3H), 3.85 (s, 3H), 4.19 (q, J ) 7.2 Hz, 2H), 4.80 (t, J ) 6.6 Hz,
1H), 6.60 (s, 2H); 13C NMR δ 14.1, 26.5, 39.3, 40.1, 51.6, 55.9,
56.0, 61.4, 108.6, 111.6, 124.7, 125.1, 148.0, 148.6, 171.1; HPLC
(Daicel Chiralcel OD, hexane/i-PrOH ) 95:5, flow rate ) 1.0
mL/min) tR ) 30.2 min (major), tR ) 44.1 min (minor); MS m/z
279 (M+).
1
yellow oil; [R]D ) +47.4 (c ) 1.0, CHCl3); H NMR δ 1.21 (t,
J ) 7.2 Hz, 3H), 2.40 (ddd, J ) 5.4, 8.7, 12.9 Hz, 1H), 2.58
(ddd, J ) 1.2, 7.8, 13.2 Hz, 1H), 2.77 (m, 2H), 3.15 (ddd, J )
5.4, 6.3, 11.7 Hz, 1H), 3.26 (ddd, J ) 5.4, 6.3, 11.7 Hz, 1H),
3.45 (dq, J ) 6.9, 9.3 Hz, 1H), 3.81 (s, 3H), 3.82 (s, 3H), 3.84
(dq, J ) 7.2, 9.5 Hz, 1H), 4.66 (t, J ) 7.2 Hz, 1H), 5.23 (d, J )
4.8 Hz, 1H), 6.56 (s, 1H), 6.57 (s, 1H); 13C NMR δ 15.1, 26.4,
43.4, 49.7, 55.8, 55.9, 59.8, 63.2, 101.7, 109.9, 110.8, 125.7,
127.1, 147.6, 147.8; HPLC (Daicel Chiralcel OJ , hexane/i-
PrOH ) 96:4, flow rate ) 1.0 mL/min) tR ) 27.7 min (major),
tR ) 44.2 min (minor); TOF ES+ m/z 302 (M + Na)+; HRMS
calcd for C15H21NaNO4 302.1368, found 302.1360.
(+)-(2S,10b S)-2-ter t-Bu t oxy-1,5,6,10b -t et r a h yd r o-2H
isoxa zolo[3,2,-a ]isoqu in olin e (exo-3c). Synthesized accord-
ing to the general procedure on a 0.4 mmol scale with catalyst
(R)-4b (10 mol %): yield 86%; ee ) 70%; yellow oil; [R]D ) 81.7
1
(c ) 1.0, CHCl3); H NMR δ 1.28 (s, 9H), 2.43 (ddd, J ) 5.5,
8.8, 12.7 Hz, 1H), 2.53 (ddd, J ) 0.9, 6.6, 12.6 Hz, 1H), 2.87
(m, 2H), 3.13 (ddd, J ) 5.1, 6.5, 11.5 Hz, 1H), 3.28 (ddd, J )
4.9, 5.4, 10.4 Hz, 1H), 4.75 (t, J ) 8.2 Hz, 1H), 5.57 (d, J ) 4.4
Hz, 1H), 7.08-7.19 (m, 4H); 13C NMR δ 27.1, 28.9, 44.1, 49.5,
60.4, 74.5, 96.9, 126.3, 126.4, 127.4, 128.2, 133.8, 135.9; HPLC
(Daicel Chiralcel OD, hexane/i-PrOH ) 98:2, flow rate ) 1.0
mL/min) tR ) 7.4 min (minor), tR )10.2 min (major); MS m/z
247 (M+). All structural assignments were in agreement with
the 1H NMR data available from the literature.7d
Ack n ow led gm en t. This work was made possible by
a grant from the Danish National Research Foundation.
(+)-(2S,10b S)-2-ter t-Bu t oxy-8,9-d im et h oxy-1,5,6,10b -
tetr ah ydr o-2H-isoxazolo[3,2,-a ]isoqu in olin e (exo-3d). Syn-
thesized according to the general procedure on a 0.4 mmol
scale employing catalyst (R)-4b (20 mol %): yield 92%; ee )
65%; yellow oil; [R]D ) +52.1 (c ) 1.0, CHCl3); 1H NMR δ 1.27
(s, 9H), 2.41 (ddd, J ) 6.0, 8.8, 12.8 Hz, 1H), 2.49 (ddd, J )
Su p p or t in g In for m a t ion Ava ila b le: 1H and 13C NMR
and MS spectra. This material is available free of charge via
the Internet at http://pubs.acs.org.
J O001157C