perform the reaction. The best yields of hexaalkoxytripheny-
lenes were obtained without using any acid and gave better
yields than any of the known methods. We have also observed
that on increasing the amount of H2SO4, partial dealkylation of
hexaalkoxytriphenylenes occurs and variable amounts of
monohydroxypentaalkoxytriphenylene can be isolated (Table
1). The work-up of the reaction is very simple; in most cases, on
pouring the reaction mixture over MeOH, a white precipitate
forms which can be filtered and recrystallized. Otherwise,
addition of water followed by extraction with hexane gives a
colourless product.
The potential of this new reagent is currently under
investigation for the synthesis of different symmetrical, un-
symmetrical and functionalized triphenylenes. The effects of
different solvents, acids and concentrations are also under
investigation and the results will be published in due course.
We are very grateful to Professor S. Chandrasekhar and
Professor H. Ringsdorf for many helpful discussions.
Footnote and References
* E-mail: uclcr@giasbg01.vsnl.net.in
Synthesis of unsymmetrical and monofunctionalized tri-
phenylenes was achieved by coupling a 3,3A,4,4A-tetraalkoxy-
biphenyl and appropriate 1,2-dialkoxybenzenes (Scheme 2)
under similar reaction conditions. Thus, when 3,3A,4,4A-tet-
rabutoxybiphenyl 3, prepared by classical Ullman coupling of
dialkoxymonoiodobenzene, was coupled with 2-butoxyanisole
4, 2-methoxy-3,6,7,10,11-butoxytriphenylene 5 was formed in
90% yield. Symmetrical and nonsymmetrical trimers of 1,2-dia-
lkoxybenzenes were the two side products in this reaction.
1 For a brief review of discotics, see S. Chandrasekhar, Liq. Cryst., 1993,
14, 3. See also S. Chandrasekhar and S. Kumar, Science Spectra, 1997,
8, 66.
2 N. Boden, R. Bissell, J. Clements and B. Movaghar, Liquid Crystals
Today, 1996, 6, 1.
3 S. Kumar, P. Schuhmacher, P. Henderson, J. Rego and H. Ringsdorf,
Mol. Cryst. Liq. Cryst., 1996, 288, 211.
4 (a) N. Boden, R. J. Bushby, A. N. Cammidge, S. Duckworth and
G. Headdoc J. Mater. Chem., 1997, 7, 601; (b) N. Boden, R. J. Bushby
and A. N. Cammidge, Mol. Cryst. Liq. Cryst., 1995, 260, 307; (c)
N. Boden, R. J. Bushby and A. N. Cammidge, Liq. Cryst., 1995, 18, 673;
(d) N. Boden, R. J. Bushby, A. N. Cammidge and G. Headdock,
J. Mater. Chem., 1995, 5, 2275; (e) N. Boden, R. J. Bushby,
A. N. Cammidge and G. Headdock, Synthesis, 1995, 31; (f) N. Boden,
R. J. Bushby and A. N. Cammidge, J. Chem. Soc., Chem. Commun.,
1994, 465; (g) N. Boden, R. C. Borner, R. J. Bushby, A. N. Cammidge
and M. V. Jesudason, Liq. Cryst., 1993, 15, 851.
OR
OR′
RO
OR
OR′
RO
RO
MoCl5, CH2Cl2
+
room temp.,
30 min, 90%
OR
5 S. Kumar, Mol. Cryst. Liq. Cryst., 1996, 289, 247; S. Kumar and
M. Manickam, Mol. Cryst. Liq. Cryst., 1997, in the press.
6 J. A. Rego, S. Kumar and H. Ringsdorf, Chem. Mater., 1996, 8, 1402;
J. A. Rego, S. Kumar, I. J. Dmochowski and H. Ringsdorf, Chem.
Commun., 1996, 1031; P. Henderson, S. Kumar, J. A. Rego,
H. Ringsdorf and P. Schuhmacher, J. Chem. Soc., Chem. Commun.,
1995, 1059; F. Closs, L. Ha¨ussling, P. Henderson, H. Ringsdorf and
P. Schuhmacher, J. Chem. Soc., Perkin Trans. 1, 1995, 829; P.
Henderson, H. Ringsdorf and P. Schuhmacher, Liq. Cryst., 1995, 18,
191.
4
RO
OR
OR
3
OR
R = Bu, R′ = Me
5
Scheme 2
Monofunctionalized triphenylene, an extremely important
precursor for the synthesis of discotic dimers, oligomers and
polymers, can be prepared by direct coupling of a 3,3A,4,4A-
tetraalkoxybiphenyl and monoalkoxyphenol. Thus, oxidative
coupling of 3,3A,4,4A-tetrabutoxybiphenyl 3 and 2-butoxyphenol
6 using MoCl5 under similar reaction conditions yielded
2-hydroxy-3,6,7,10,11-butoxytriphenylene 7 in 47% yield
(Scheme 3).
7 R. C. Borner and R. F. W. Jackson, J. Chem. Soc., Chem. Commun.,
1994, 845.
8 J. W. Goodby, M. Hird, K. J. Toyne and T. Watson, J. Chem. Soc.,
Chem. Commun., 1994, 1701.
9 H. Naarmann, M. Hanack and R. Mattmer, Synthesis, 1994, 477.
10 (a) I. M. Matheson, O. C. Musgrave and C. J. Webster, Chem. Commun.,
1965, 278; (b) O. C. Musgrave and C. J. Webster, J. Chem. Soc., 1971,
139; (c) M. Piatelli, E. Fattorusso, R. A. Nicolaus and S. Magno,
Tetrahedron, 1965, 21, 3229; (d) C. Destrade, M. C. Mondon and
J. Malthete, J. Phys. Colloq., 1979, 40, C3; (e) O. C. Musgrave, Chem.
Rev., 1969, 69, 499.
11 K. Bechgaard and V. D. Parker, J. Am. Chem. Soc., 1972, 94, 4749;
V. Le Berre, L. Angely, N. Simonet-Gueguen and J. Simonet, J. Chem.
Soc., Chem. Commun., 1987, 984; V. Le Berre, J. Simonet and P. Batail,
J. Electroanal. Chem., 1984, 169, 325; J. Chapuzet and J. Simonet,
Tetrahedron, 1991, 47, 791.
OR
OH
RO
OR
OH
OR
RO
RO
MoCl5, CH2Cl2
+
room temp.,
30 min, 47%
6
RO
OR
12 H. Bengs, O. Karthaus, H. Ringsdorf, C. Baehr, M. Ebert and
J. M. Wendorff, Liq. Cryst., 1991, 10, 161.
OR
3
OR
R = Bu
7
Scheme 3
Received in Cambridge, UK, 13th June 1997; 7/04130F
1616
Chem. Commun., 1997