family members, and a wide range of other biological targets in
vitro. Importantly, RN-9893 inhibits the TRPV4 receptor when it
is activated by exogenous agonists such as the phorbol ester, 4α-
PDD, and by more physiologically relevant agonists, such as
hypotonicity. The compounds identified in this report may be of
use to those examining the function of the TRPV4 receptor in
vivo, and, given their alternative chemical scaffold, will
complement the other small molecule antagonist probes of
TRPV4 that have recently been disclosed in the primary
literature.
Protein binding (rat)
99.91 ±0.01
99.92 ±0.01
99.0 ±0.1
99.0 ±0.1
Protein binding (human)
aData is the mean value ±standard deviation
As mentioned previously, the TRPV4 receptor can be
activated by multiple stimuli in vivo, such as hypotonicity,
endogenous ligands, warm temperature and protein
phosphorylation. As such, it can be regarded as a multimodal
receptor, similar to its cousin, the TRPV1 receptor (which is
activated by high temperature, acidic pH and endogenous small
molecules). In order to determine if RN-989326 could block both
the effects of exogenous ligands, and those of more
physiologically-relevant conditions, we determined the IC50
against rTRPV4 when the receptor was activated by either 4α-
PDD, or 20% hypotonicity (Figure 2). RN-9893 26 inhibited
rTRPV4 with an IC50 of 0.57 μM when 4α-PDD was used as an
agonist. Similarly, RN-9893 26 inhibited rTRPV4 with an IC50 of
2.1 μM when hypotonicity was used as the activating stimulus,
indicating that RN-9893 is capable of antagonizing both
activation modalities.42 These results were similar to those
observed with the related TRPV4 antagonist, RN-1734 6.35
References and notes
1. Damann, N.; Voets, T.; Nilius, B. Curr. Biol. 2008, 18, R880.
2. Venkatachalam, K.; Montell, C. Annu. Rev. Biochem. 2007, 76,
387.
3. Bandell, M.; Macpherson, L. J.; Patapoutian, A. Curr. Opin.
Neurobiol. 2007, 17, 490.
4. Caterina, M. J. Am. J. Physiol. Regul. Integr. Comp. Physiol.
2007, 292, R64.
5. Caterina, M. J.; Schumacher, M. A.; Tominaga, M.; Rosen, T. A.;
Levine, J. D.; Julius, D. Nature 1997, 389, 816.
6. Szallasi, A.; Cortright, D. N.; Blum, C. A.; Eid, S. R. Nat. Rev.
Drug Discov. 2007, 6, 357.
7. Liedtke, W.; Choe, Y.; Marti-Renom, M. A.; Bell, A. M.; Denis,
C. S.; Sali, A.; Hudspeth, A. J.; Friedman, J. M.; Heller, S. Cell
2000, 103, 525.
8. Strotmann, R.; Harteneck, C.; Nunnenmacher, K.; Schultz, G.;
Plant, T. D. Nat. Cell Biol. 2000, 2, 695.
9. Nilius, B.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T. Am. J.
Physiol. Cell Physiol. 2004, 286, C195.
10. Todaka, H.; Taniguchi, J.; Satoh, J.; Mizuno, A.; Suzuki, M. J.
Biol. Chem. 2004, 279, 35133.
11. Watanabe, H.; Davis, J. B.; Smart, D.; Jerman, J. C.; Smith, G. D.;
Hayes, P.; Vriens, J.; Cairns, W.; Wissenbach, U.; Prenen, J.;
Flockerzi, V.; Droogmans, G.; Benham, C. D.; Nilius, B. J. Biol.
Chem. 2002, 277, 13569.
12. Watanabe, H.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T.;
Nilius, B. Nature 2003, 424, 434.
100
50
0
13. Everaerts, W.; Nilius, B.; Owsianik, G. Prog. Biophys. Mol. Biol.
2010, 103, 2.
-8
-7
-6
-5
-4
14. Vincent, F.; Duncton, M. A. J. Curr. Top. Med. Chem. 2010, 11,
2216.
Log[RN-9893]
15. (a) Vincent, F.; Duncton, M. A. J. TRP Channels in Drug
Discovery; Szallasi, A.; Biro, T., Ed.; Springer: New York, 2012,
Vol. 1, pp 257-270. (b) Duncton, M. A. J. TRP Channels as
Therapeutic Targets; Szallasi, A. Ed.; Academic Press: London,
2015, pp. 205-215.
Figure 2. Dose response curves obtained for RN-9893 26 against
rTRPV4 activated by 4-PDD (▼) and 20% hypotonicity (■).
16. Willette, R. N.; Bao, W.; Nerurkar, S.; Yue, T. L.; Doe, C. P.;
Stankus, G.; Turner, G. H.; Ju, H.; Thomas, H.; Fishman, C. E.;
Sulpizio, A.; Behm, D. J.; Hoffman, S.; Lin, Z.; Lozinskaya, I.;
Casillas, L. N.; Lin, M.; Trout, R. E.; Votta, B. J.; Thorneloe, K.;
Lashinger, E. S.; Figueroa, D. J.; Marquis, R.; Xu, X. J.
Pharmacol. Exp. Ther. 2008, 326, 443.
17. Krakow, D.; Vriens, J.; Camacho, N.; Luong, P.; Deixler, H.;
Funari, T. L.; Bacino, C. A.; Irons, M. B.; Holm, I. A.; Sadler, L.;
Okenfuss, E. B.; Janssens, A.; Voets, T.; Rimoin, D. L.; Lachman,
R. S.; Nilius, B.; Cohn, D. H. Am. J. Hum. Genet. 2009, 84, 307.
18. Rock, M. J.; Prenen, J.; Funari, V. A.; Funari, T. L.; Merriman, B.;
Nelson, S. F.; Lachman, R. S.; Wilcox, W. R.; Reyno, S.;
Quadrelli, R.; Vaglio, A.; Owsianik, G.; Janssens, A.; Voets, T.;
Ikegawa, S.; Nagai, T.; Rimoin, D. L.; Nilius, B.; Cohn, D. H.
Nat. Genet. 2008, 40, 999.
Finally, we assessed the selectivity of RN-9893 26 against a
small panel of human TRP receptors, both those agonized by heat
(TRPV1 and TRPV3), and by cold (TRPM8). RN-9893 26
showed no inhibition of TRPV1 at a concentration of 10 μM, an
IC50 >30 μM against TRPV3 and an IC50 of approximately 30 μM
against TRPM8. The results from this small selectivity panel
indicate that RN-9893 is a relatively selective TRPV4 antagonist
when evaluated against related family members. Additionally,
profiling of this compound in a panel of 54 binding assays
against common biological targets revealed good selectivity
against other proteins, as significant inhibition at 10 M was only
observed against the M1 muscarinic receptor (see Supplemental
Material). Overall, the in vitro pharmacology profile and in vivo
pharmacokinetic characteristics for RN-9893 26, suggest that this
molecule may be suitable as a proof-of-concept probe of TRPV4
function (Table 6).
19. Suzuki, M.; Mizuno, A.; Kodaira, K.; Imai, M. J. Biol. Chem.
2003, 278, 22664.
20. Alessandri-Haber, N.; Yeh, J. J.; Boyd, A. E.; Parada, C. A.;
Chen, X.; Reichling, D. B.; Levine, J. D. Neuron 2003, 39, 497.
21. Alessandri-Haber, N.; Dina, O. A.; Yeh, J. J.; Parada, C. A.;
Reichling, D. B.; Levine, J. D. J. Neurosci. 2004, 24, 4444.
22. Cenac, N.; Altier, C.; Chapman, K.; Liedtke, W.; Zamponi, G.;
Vergnolle, N. Gastroenterology 2008, 135, 937.e2.
23. Zhang, Y.; Wang, Y. H.; Ge, H. Y.; Arendt-Nielsen, L.; Wang, R.;
Yue, S. W. Neurosci. Lett. 2008, 432, 222.
24. Alessandri-Haber, N.; Dina, O. A.; Joseph, E. K.; Reichling, D.
B.; Levine, J. D. J. Neurosci. 2008, 28, 1046.
In conclusion, this report details the identification of orally-
bioavailable inhibitors of the TRPV4 receptor, such as the pen-
tafluorosulfamyl derivative RN-1665 23, and the tri-substituted
benzamide RN-9893 26. The most promising compound from
our studies, RN-9893 26, is a potent antagonist at human, rat and
mouse TRPV4 receptors, and is selective against related TRP