3
928
H. Zeng et al. / Tetrahedron Letters 52 (2011) 3926–3928
R
O
route A
intramolecular
hydroarylation
dehydration
R
OH
+
cat. Re
2
3
OH
intermolecular
hydroarylation
route B
R
OH
dehydration
1
Scheme 1. Proposed mechanism for rhenium-catalyzed condensation of phenols with propargyl alcohols.
In summary, we have developed rhenium(I)-catalyzed conden-
4 2
sation of phenols with 2-methyl-3-butyn-2-ol to afford 2,2-
dimethyl-2H-chromenes in mild to high yields. This procedure
provides a highly atom-efficient route to 2,2-dimethyl-2H-chrom-
enes having various substituents on the benzene ring. Mild
reaction conditions without a requirement for an inert atmosphere
and partial recovery of the rhenium catalyst are notable advanta-
ges of the given catalytic procedure.
References and notes
1.
Selected reports, see: (a) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao, G.-Q. Angew.
Chem., Int. Ed. 2000, 39, 734–739; (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker,
A. J.; Cao, G.-Q.; Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939–
9953.
2.
Selected reports, see: (a) Mannhold, R.; Cruciani, G.; Weber, H.; Lemoine, H.;
Derix, A.; Weichel, C.; Clementi, M. J. Med. Chem. 1999, 42, 981–991; (b)
Sant’Anna, S. S.; Evangelista, E. A.; Alves, R. B.; Raslan, D. S. Chem. Nat. Compd.
2005, 41, 385–387; (c) Page, P. C. B.; Buckley, B. R.; Heaney, H.; Blacker, A. J. Org.
Lett. 2005, 7, 375–377; (d) Szczepanik, M.; Obara, R.; Szumny, A.; Gabrys, B.;
Halarewicz-Pacan, A.; Nawrot, J.; Wawrzenczyk, C. J. Agric. Food Chem. 2005, 53,
A
5
typical experimental procedure for ReCl(CO) -catalyzed
cyclocondensation of 4-methoxyphenol (1a) with 2-methyl-3-
butyn-2-ol (2a) affording 6-methoxy-2,2- dimethyl-2H-chromene
(
(
3a) (Table 1, entry 14): A mixture of 4-methoxyphenol (1a)
124.0 mg, 1.0 mmol), 2-methyl-3-butyn-2-ol (2a) (252.3 mg,
5905–5910.
3
.0 mmol), ReCl(CO)
5
(25.3 mg, 0.07 mmol), and n-hexane
3. Sartori, G.; Casiraghi, G.; Bolzoni, L.; Casnati, G. J. Org. Chem. 1979, 44, 803–805.
4. (a) Bergmann, R.; Gericke, R. J. Med. Chem. 1990, 33, 492–504; (b) Kureshy, R. I.;
Ahmad, I.; Pathak, K.; Khan, N. H.; Abdi, S. H. R.; Jasra, R. V. Catal. Commun.
(
1.5 mL) was heated at 60 °C (oil bath temperature) with stirring
in a screw-capped thick-walled Pyrex tube in air atmosphere, with
the mixture becoming homogeneous within few minutes of heat-
ing. After heating for 6 h, the reaction mixture was cooled to room
2009, 10, 572–575.
5.
6.
7.
North, J. T.; Kronenthal, D. R.; Pullockaran, A. J.; Real, S. D.; Chen, H. Y. J. Org.
Chem. 1995, 60, 3397–3400.
Chauder, B. A.; Lopes, C. C.; Lopes, R. S. C.; da Silva, A. J. M.; Snieckus, V.
Synthesis 1998, 279–282.
2 2
temperature, diluted with CH Cl (4.0 mL), and then n-octadecane
(
92.5 mg, 0.36 mmol) was added as an internal standard for GC
Lee, Y. R.; Choi, J. H.; Yoon, S. H. Tetrahedron Lett. 2005, 46, 7539–7543.
analysis. After GC and GC–MS analyses of the reaction mixture, vol-
atiles were removed under reduced pressure, and the residue was
subjected to preparative TLC isolation (silica gel, eluted with a sol-
vent mixture of CH Cl and petroleum ether (1:4)) to afford 3a as a
2 2
pale yellow oil (171.1 mg, 0.9 mmol, 90%). The GC analysis of the
8. Subburaj, K.; Trivedi, G. K. Bull. Chem. Soc. Jpn. 1999, 72, 259–263.
Prado, S.; Janin, Y. L.; Bost, P.-E. J. Heterocycl. Chem. 2006, 43, 1605–1608.
9.
1
1
0. Pandey, G.; Krishna, A. J. Org. Chem. 1988, 53, 2364–2365.
1. (a) Hua, R.; Tanaka, M. New J. Chem. 2001, 25, 179–184; (b) Huang, Q.; Hua, R.
Catal. Commun. 2007, 8, 1031–1035; (c) Zhao, W.-G.; Hua, R. Tetrahedron 2007,
6
3, 11803–11808; (d) Li, M.; Hua, R. J. Org. Chem. 2008, 73, 8658–8660.
12. Hua, R.; Jiang, J.-L. Curr. Org. Synth. 2007, 4, 151–174.
reaction mixture revealed the formation of 3a in 95% GC yield. Data
1
3. The similar cyclocondensation of phenols with propargyl alcohols to afford
substituted 2H-chromenes, see: (a) Ishino, Y.; Mihara, M.; Hayakawa, N.;
Miyata, T.; Kaneko, Y.; Miyata, T. Synth. Commun. 2001, 31, 439–448; (b)
Coelho, P. J.; Salvador, M. A.; Heron, B. M.; Carvalho, L. M. Tetrahedron 2005, 61,
1
for 3a: pale yellow oil; H NMR (300 MHz, CDCl
3
) d 6.64–6.45 (m,
3
1
1
H), 6.19 (d, 1H, J = 9.6 Hz), 5.54 (d, 1H, J = 9.6 Hz), 3.65 (s, 3H),
1
3
3
.32 (s, 6H); C NMR (75 MHz, CDCl ) d 153.9, 146.8, 131.8,
11730–11743; (c) Zhao, W.; Carreira, E. M. Org. Lett. 2006, 8, 99–102; (d)
22.5, 122.0, 116.9, 114.3, 111.6, 75.8, 55.8, 27.7; GC–MS m/z (%
Moorthy, J. N.; Koner, A. L.; Samanta, S.; Roy, A.; Nau, W. M. Chem. Eur. J. 2009,
15, 4289–4300.
+
rel. inten.) 190 (M , 20), 175 (100), 160 (5), 132 (13), 124 (6), 77
4).
1
1
1
(
5. (a) Singh, I. P.; Bharate, S. B.; Bhutani, K. K. Curr. Sci. 2005, 89, 269–290; (b) Lee,
Y. R.; Kim, Y. M. Helv. Chim. Acta 2007, 90, 2401–2413.
6. (a) Tanaka, K.; Aoki, H.; Hosomi, H.; Ohba, S. Org. Lett. 2000, 2, 2133–2134; (b)
Gartner, C. A.; Wen, B.; Wan, J.; Becker, R. S.; Jones, G.; Gygi, S. P.; Nelson, S. D.
Biochemistry 2005, 44, 1846–1855; (c) Rawat, M.; Prutyanov, V.; Wulff, W. D. J.
Am. Chem. Soc. 2006, 128, 11044–11053.
Acknowledgment
This project was supported by the National Natural Science
Foundation of China (20972084 and 21032004).
17. For transition metal-based Lewis acids, see: (a) Beck, W.; Sünkel, K. Chem. Rev.
1
988, 88, 1405–1421; (b) Murahashi, S. I.; Takaya, H. Acc. Chem. Res. 2000, 33,
Supplementary data
225–233.
1
1
8. Liu, Y.; Hua, R.; Sun, H.-B.; Qiu, X. Organometallics 2005, 24, 2819–2821.
9. Kuninobu, Y.; Kikuchi, K.; Tokunaga, Y.; Nishina, Y.; Takai, K. Tetrahedron 2008,
Supplementary data (general method, characterization data,
6
4, 5974–5981.
1
13
charts of H, C NMR for all products and the full X-ray diffraction