7
902 Communications to the Editor
Macromolecules, Vol. 36, No. 21, 2003
rameter to the study of the self-assembly of ABC triblock
copolymers, namely molecular recognition and comple-
mentarity between the different blocks. Further studies
on the interplay of molecular recognition and mi-
crophase separation in the self-assembly of these tri-
block copolymers are underway.
(6) Grubbs, R. H.; Tumas, W. Science 1989, 243, 907-915.
Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565-1604.
(7) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1
999, 1, 953-956. Schwab, P. E.; Grubbs, R. H.; Ziller, J .
W. J . Am. Chem. Soc. 1996, 118, 100-110. Schwab, P.;
France, M. B.; Ziller, J . W.; Grubbs, R. H. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2039-2041.
(
8) Kwart, H.; Burchuk, I. J . Am. Chem. Soc. 1952, 74, 3094-
3
097.
Ack n ow led gm en t. We thank the Natural Sciences
and Engineering Research Council of Canada (NSERC),
FQRNT Center for Self-Assembled Chemical Structures,
the Research Corporation, the Canada Foundation for
Innovation (CFI), and McGill University for financial
support. H. F. Sleiman is a Cottrell Scholar of the
Research Corporation.
(
9) Clevenger, R. C.; Turnbull, K. D. Synth. Commun. 2000,
3
0, 1379-1388. Hillmyer, M. A.; Lepetit, C.; McGrath, D.
V.; Novak, B. M.; Grubbs, R. H.; Macromolecules 1992, 25,
3345-3350.
(
10) Beijer, F. H.; Sijbesma, R. P.; Vekemans, J .; Meijer, E. W.;
Kooijman, H.; Spek, A. L. J . Org. Chem. 1996, 61, 6371-
6
380. Sideratou, Z.; Tsiourvas, D.; Paleos, C. M.; Peppas,
E.; Anastassopoulou, J .; Theophanides, T. J . Mol. Struct.
999, 484, 91-101.
1
Su p p or tin g In for m a tion Ava ila ble: Full experimental
(11) Bernstein, J .; Stearns, B.; Shaw, E.; Lott, W. A. J . Am.
Chem. Soc. 1947, 69, 1151-1158.
details of the synthesis and characterization of monomers and
1
polymers, H NMR monitoring of the polymerization of mono-
(12) We performed a preliminary investigation of the living
nature of the ROMP of 4 by monitoring this polymerization
mer 4, and GPC data table of the polymers. This material is
available free of charge via the Internet at http://pubs.acs.org.
1
by H NMR (monomer:initiator 10:1). A linear dependence
of the molecular weight of the polymer on the conversion of
monomer 4 was observed (see Supporting Information).
13) See Supporting Information.
Refer en ces a n d Notes
(
(
14) Cochran, E. W.; Morse, D. C.; Bates, F. S. Macromolecules
(
1) Bloomfield, V. A.; Crothers, D. M.; Tinoco, I. Nucleic Acids:
Structures, Properties and Functions; University Science
Books: Sausalito, 2000.
2
003, 36, 782-792. Triftaridou, A. I.; Vamvakaki, M.;
Patrickios, C. S. Polymer 2002, 43, 2921-2926 and refer-
ences therein.
(2) Storhoff, J . J .; Mirkin, C. A. Chem. Rev. 1999, 99, 1849-
1
862.
(15) Choi, T.-L.; Grubbs, R. H. Angew. Chem., Int. Ed. 2003, 42,
1743-1746.
(16) See Table 1 in the Supporting Information.
(
3) Frankamp, B. L.; Uzun, O.; Ilhan, F.; Boal, A. K.; Rotello,
V. M. J . Am. Chem. Soc. 2002, 124, 892-893. Ilhan, F.;
Gray, M.; Rotello, V. M. Macromolecules 2001, 34, 2597-
(17) The ROMP of monomer 3 was complete in approximately
10 min, while the ROMP of monomer 4 took 30 min. This
difference in reactivity is expected to result in a block
copolymer, rather than a random copolymer in 14, even
though the last polymerization step was carried out in the
presence of both monomers 3 and 4. Indeed, after the
polymerization was over, the 1H NMR integration of unre-
acted monomer 4 (olefinic peaks relative to the aromatic
portion of the diaminopyridine unit) did not change signifi-
cantly, indicating that 4 did not react, while monomer 3 was
being consumed in the polymerization. Thus, copolymer 14
is most likely a triblock copolymer, even though we cannot
exclude the possibility of some randomness in its last block.
(18) The three blocks in these ABC polymers possess different
solubility properties. Poly(2) is soluble in THF and insoluble
in dichloromethane, poly(4) (or 6) is soluble in THF and
gives slightly turbid solutions in dichloromethane, and poly-
(3) is soluble in both THF and dichloromethane.
2
601. Boal, A. K.; Ilhan, F.; DeRouchey, J . E.; Thurn-
Albrecht, T.; Russel, T. P.; Rotello, V. M. Nature (London)
000, 404, 746-748. Ilhan, F.; Galow, T. H.; Gray, M.;
Clavier, G.; Rotello, V. M. J . Am. Chem. Soc. 2000, 122,
2
5
895-5896. Brunsveld, L.; Folmer, B. J . B.; Lange, R. F.
M.; Meijer, E. W. Macromolecules 1995, 28, 782-783. Inaki,
Y.; Takemoto, K. Adv. Polym. Sci. 1981, 41, 1-51. Aponte,
M. A.; Butler, G. B. J . Polym. Sci., Polym. Chem. Ed. 1984,
2
2, 3715-3724. Aponte, M. A.; Butler, G. B. J . Polym. Sci.,
Polym. Chem. Ed. 1984, 22, 3725-3737. Meijer, E. W.;
Sijbesma, R. P. Chem. Rev. 2001, 101, 4071-4098.
(
4) Recent examples of the use of living polymerization to
generate homopolymers containing molecular recognition
units: Khan, A.; Haddleton, D. M.; Hannon, M. J .; Kukulj,
D.; Marsh, A. Macromolecules 1999, 32, 6560-6564. Stubbs,
L. P.; Weck, M. Chem.sEur. J . 2003, 9, 992-999. Pollino,
J . M.; Stubbs, L. P.; Weck, M. Macromolecules 2003, 36,
2
230-2234. See also ref 5.
5) Bazzi, H. S.; Sleiman, H. F. Macromolecules 2002, 35, 9617-
620. Dalphond, J .; Bazzi, H. S.; Kahrim, K.; Sleiman, H.
F. Macromol. Chem. Phys. 2002, 203, 1988-1994.
(
19) Huckstadt, H.; Gopfert, A.; Abetz, V. Polymer 2000, 41,
(
9
089-9094.
9
MA034683P