Page 7 of 9
Analytical Chemistry
peroxidases naturally immobilized on coconut fibers. Biosens.
Bioelectron. 2010, 25, 1143-1148.
The Supporting Information is available free of charge on the
ACS Publications website.
1
2
3
4
13. Hu, J.; Dong, Y. L.; Zhang, H. J.; Chen, X. J.; Chen, X. G.;
Zhang, H. G.; Chen, H. L., Naked eye detection of benzoyl peroxide
in wheat flour using 3,3′,5,5′-tetramethylbenzidine as a chromogenic
agent. RSC Adv. 2013, 3, 26307-26312.
AUTHOR INFORMATION
Corresponding Author
14. Lin, T. R.; Zhang, M. Q.; Xu, F. H.; Wang, X. Y.; Xu, Z. F.;
Guo, L. Q., Colorimetric detection of benzoyl peroxide based on the
etching of silver nanoshells of Au@Ag nanorods. Sens. Actuators B
2018, 261, 379-384.
5
6
7
8
Fax & Tel: (+86)-28-85470368
Author Contributions
15. Wang, L. Q.; Zang, Q. G.; Chen, W. S.; Hao, Y. Q.; Liu, Y. N.;
The manuscript was written through Q.-H.Z., G.-H.Z., G.-H.T.
and L.Z.. L.H., G.-H.T. and W.-L.Y. designed the project. Q.-H.Z.,
and W.-L.Y. performed the experiments and analyzed the data.
All authors have given approval to the final version of the
manuscript.
9
Li, J.,
A
ratiometric fluorescent probe with excited-state
intramolecular proton transfer for benzoyl peroxide. RSC Adv. 2013, 3,
8674-8676.
16. Tian, X. W.; Li, Z.; Pang, Y. X.; Li, D. Y.; Yang, X. B.,
Benzoyl Peroxide Detection in Real Samples and Zebrafish Imaging
by a Designed Near-Infrared Fluorescent Probe. J. Agric. Food Chem.
2017, 65, 9553-9558.
17. Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., A
Selective, Cell-Permeable Optical Probe for Hydrogen Peroxide in
Living Cells. J. Am. Chem. Soc. 2004, 126, 15392-15393.
18. Dickinson, B. C.; Huynh, C.; Chang, C. J., A Palette of
Fluorescent Probes with Varying Emission Colors for Imaging
Hydrogen Peroxide Signaling in Living Cells. J. Am. Chem. Soc.
2010, 132, 5906-5915.
19. Jiang, Z. L.; Wen, G. Q.; Luo, Y. H.; Zhang, X. H.; Liu, Q. Y.;
Liang, A. H., A new silver nanorod SPR probe for detection of trace
benzoyl peroxide. Sci. Rep. 2014, 4, 5323-5330.
20. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.;
Scrosati, B., Ionic-liquid materials for the electrochemical challenges
of the future. Nat. Mater. 2009, 8, 621-629.
21. Cheng, K. L.; Yuan, W. L.; He, L.; Tang, N.; Jian, H. M.;
Zhao, Y.; Qin, S.; Tao, G. H., Fluorescigenic Magnetofluids Based on
Gadolinium, Terbium, and Dysprosium-Containing Imidazolium
Salts. Inorg. Chem. 2018, 57, 6376-6390.
22. Yuan, W. L.; Yang, X.; He, L.; Xue, Y.; Qin, S.; Tao, G. H.,
Viscosity, Conductivity, and Electrochemical Property of
Dicyanamide Ionic Liquids. Front. Chem. 2018, 6, 59-71.
23. Song, K. X.; He, L.; Zhang, L.; Tao, G. H., Renewable
Lanthanide Ionic Liquid/Polymer Composites for High-Efficient
Adsorption of Particulate Matter. Adv. Mater. Interfaces 2018, 5, 1-8.
24. Ho, T. D.; Zhang, C.; Hantao, L. W.; Anderson, J. L., Ionic
liquids in analytical chemistry: fundamentals, advances, and
perspectives. Anal. Chem. 2014, 86, 262-285.
25. Matsumoto, M.; Shimizu, S.; Sotoike, R.; Watanabe, M.;
Iwasa, Y.; Itoh, Y.; Aida, T., Exceptionally High Electric Double
Layer Capacitances of Oligomeric Ionic Liquids. J. Am. Chem. Soc.
2017, 139, 16072-16075.
26. Smiglak, M.; Pringle, J. M.; Lu, X.; Han, L.; Zhang, S.; Gao,
H.; MacFarlane, D. R.; Rogers, R. D., Ionic liquids for energy,
materials, and medicine. Chem. Commun. 2014, 50, 9228-9250.
27. Hoogerstraete, T. V.; Wellens, S.; Verachtert, K.; Binnemans,
K., Removal of transition metals from rare earths by solvent
extraction with an undiluted phosphonium ionic liquid: separations
relevant to rare-earth magnet recycling. Green Chem. 2013, 15, 919-
927.
28. Zhao, Y.; He, L.; Qin, S.; Tao, G. H., Tunable luminescence of
lanthanide (Ln = Sm, Eu, Tb) hydrophilic ionic polymers based on
poly (N-methyl-4-vinylpyridinium-co-styrene) cations. Polym. Chem.
2016, 7, 7068-7077.
29. Sun, N.; Rodriguez, H.; Rahman, M.; Rogers, R. D., Where are
ionic liquid strategies most suited in the pursuit of chemicals and
energy from lignocellulosic biomass? Chem. Commun. 2011, 47,
1405-1421.
30. Hice, S. A.; Clark, K. D.; Anderson, J. L.; Brehm-Stecher, B.
F., Capture, Concentration and Detection of Salmonella in Foods
Using Magnetic Ionic Liquids and Recombinase Polymerase
Amplification. Anal. Chem. 2018, 91, 1113-1120.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The finance support of National Natural Science Foundation of
China (No. 21876120), and China Scholarship Council are
gratefully acknowledged. We gratefully acknowledge the platform
of specialized laboratory, College of Chemistry, Sichuan
University and the Analytical and Testing Center of Sichuan
University for instrumental measurements.
REFERENCES
1. McIntosh, D.; Khabashesku, V. N.; Barrera, E. V., Benzoyl
Peroxide Initiated In Situ Functionalization, Processing, and
Mechanical Properties of Single-Walled Carbon Nanotube
Polypropylene Composite Fibers. J. Phys. Chem. C 2007, 111, 1592-
1600.
2. Lamsal, B. P.; Faubion, J. M., Effect of an enzyme preparation
on wheat flour and dough color, mixing, and test baking. LWT - Food
Sci. Technol. 2009, 42, 1461-1467.
3. Binder, R. L.; Aardema, M. J.; Thompson, E. D., Benzoyl
peroxide: review of experimental carcinogenesis and human safety
data. Prog Clin. Biol. Res. 1995, 391, 245-294.
4. Hogan, D. J.; To, T.; Wilson, E. R.; Miller, A. B.; Robson, D.;
Holfeld, K.; Lane, P., A study of acne treatments as risk factors for
skin cancer of the head and neck. Brit. J. Dermatol. 1991, 125, 343-
348.
5. Lyman, W. J.; Reehl, W. F.; Rosenblatt, D. H., Handbook of
chemical property estimation methods: Environmental behavior of
organic compounds. 1990.
6. National Institute of Environmental Research (NIER), Combined
Repeated Dose Toxicity with the Reproduction /Developmental
Toxicity Screening Testing of Benzoyl peroxide in Rats. 2001
7. Chen, W.; Li, Z.; Shi, W.; Ma, H. M., A new resorufin-based
spectroscopic probe for simple and sensitive detection of benzoyl
peroxide via deboronation. Chem. Commun. 2012, 48, 2809-2811.
8. National Standards of the People’s Republic of China, GB 2760-
2007.
9. Mu, G. F.; Liu, H. T.; Gao, Y.; Luan, F., Determination of
benzoyl peroxide, as benzoic acid, in wheat flour by capillary
electrophoresis compared with HPLC. J. Sci. Food Agric. 2012, 92,
960-964.
10. Ponhong, K.; Supharoek, S. A.; Siriangkhawut, W.; Grudpan,
K., A rapid and sensitive spectrophotometric method for the
determination of benzoyl peroxide in wheat flour samples. J. Food
Drug Anal. 2015, 23, 652-659.
11. Liu, W.; Zhang, Z. J.; Yang, L., Chemiluminescence
microfluidic chip fabricated in PMMA for determination of benzoyl
peroxide in flour. Food Chem. 2006, 95, 693-698.
12. Kozan, J. V. B.; Silva, R. P.; Serrano, S. H. P.; Lima, A. W. O.;
Angnes, L., Amperometric detection of benzoyl peroxide in
pharmaceutical preparations using carbon paste electrodes with
31. Che, S. Y.; Dao, R.; Zhang, W. D.; Lv, X. Y.; Li, H. R.; Wang,
C. M., Designing an anion-functionalized fluorescent ionic liquid as
ACS Paragon Plus Environment