4 Comprehensive review of directed evolution of enantioselective enzymes:
M. T. Reetz, in Advances in Catalysis, ed. B. C. Gates and H. Kno¨zinger,
Elsevier, San Diego, 2006, vol. 49, pp. 1–69.
reverted back to serine (Scheme 3). Thus, the best variant of
this study is characterized by a single mutation (Asn49Val).
The increase in selectivity corresponds to about DDG?
=
5 (a) G. W. Parshall and S. D. Ittel, Homogeneous Catalysis; The
Application and Chemistry of Catalysis by Soluble Transition Metal
Complexes, 2nd edn, John Wiley & Sons, Inc., New York, 1992; (b)
B. Cornils and W. A. Herrmann, Applied Homogeneous Catalysis with
Organometallic Compounds, Wiley-VCH, Weinheim, 1996, vol. 1–2.
6 (a) M. T. Reetz, DE-A 101 29 187.6, 2001; (b) M. T. Reetz, Tetrahedron,
2002, 58, 6595–6602; (c) M. T. Reetz, M. Rentzsch, A. Pletsch and
M. Maywald, Chimia, 2002, 56, 721–723.
2.7 kJ 6 mol21. Mutagenesis experiments at positions 51, 54,
79, 81, 84, 85 and 87 were not successful because no soluble
protein was obtained. In contrast, saturation mutagenesis at
position 49 on WT template led directly to mutants III and IV.
The latter is characterized by Asn49His. This variant has lower
enantioselectivity than the WT (ee = 8% (R)), suggesting the
possibility of inverting stereoselectivity. The plasmid encoding
variant IV was utilized as a template for saturation mutagenesis.
Indeed, upon focusing on position 124, mutant V (Asn49His/
Leu124Phe) was identified which is (S)-selective, although not by a
great degree (ee = 7%). The essential evolutionary steps are
summarized in Scheme 3. We observed no clear relationship
between enantioselectivity and rate, although differences in activity
were observed.
7 (a) D. Qi, C.-M. Tann, D. Haring and M. D. Distefano, Chem. Rev.,
2001, 101, 3081–3111; (b) L. Polgar and M. L. Bender, J. Am. Chem.
Soc., 1966, 88, 3153–3154; (c) P. G. Schultz, Science, 1988, 240, 426–433;
(d) K. Khumtaveeporn, G. DeSantis and J. B. Jones, Tetrahedron:
Asymmetry, 1999, 10, 2563–2572; (e) H. B. Smith and F. C. Hartman,
J. Biol. Chem., 1988, 263, 4921–4925; (f) K. M. Nicholas, P. Wentworth,
Jr., C. W. Harwig, A. D. Wentworth, A. Shafton and K. D. Janda,
Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 2648–2653; (g) I. Hamachi and
S. Shinkai, Eur. J. Org. Chem., 1999, 539–549; (h) Y. Lu, Curr. Opin.
Chem. Biol., 2005, 9, 118–126; (i) Y. Lu and J. S. Valentine, Curr. Opin.
Struct. Biol., 1997, 7, 495–500; (j) Y. Lu, S. M. Berry and T. D. Pfister,
Chem. Rev., 2001, 101, 3047–3080; (k) P. D. Barker, Curr. Opin. Struct.
Biol., 2003, 13, 490–499, see also: (l)E. T. Kaiser, Angew. Chem., 1988,
100, 945–955, (Angew. Chem., Int. Ed. Engl., 1988, 27, 913–922); (m)
D. Hilvert and E. T. Kaiser, Biotechnol. Genet. Eng. Rev., 1987, 5,
297–318; (n) J. G. de Vries and L. Lefort, Chem.–Eur. J., 2006, 12,
4722–4734; (o) C. A. Kruithof, M. A. Casado, G. Guillena,
M. R. Egmond, A. van der Kerk-van Hoof, A. J. R. Heck, R. J. M.
Klein Gebbink and G. van Koten, Chem.–Eur. J., 2005, 11, 6869–6877;
(p) L. Panella, J. Broos, J. Jin, M. W. Fraaije, D. B. Janssen,
M. Jeronimus-Stratingh, B. L. Feringa, A. J. Minnaard and J. G. de
Vries, Chem. Commun., 2005, 5656–5658; (q) B. G. Davies, Curr. Opin.
Biotechnol., 2003, 14, 379–386.
8 M. T. Reetz, Angew. Chem., 2001, 113, 292–320, (Angew. Chem., Int.
Ed., 2001, 40, 284–310).
9 (a) M. E. Wilson and G. M. Whitesides, J. Am. Chem. Soc., 1978, 100,
306–307, see also: (l) C.-C. Lin, C.-W. Lin and A. S. C. Chan,
Tetrahedron: Asymmetry, 1999, 10, 1887–1893.
10 (a) J. Collot, J. Gradinaru, N. Humbert, M. Skander, A. Zocchi and
T. R. Ward, J. Am. Chem. Soc., 2003, 125, 9030–9031; (b) C. M. Thomas
and T. R. Ward, Chem. Soc. Rev., 2005, 34, 337–346.
11 (a) E. A. Bayer, H. Ben-Hur and M. Wilchek, Methods Enzymol., 1990,
184, 80–89; (b) L. D. Thompson and P. C. Weber, Gene, 1993, 136,
243–246; (c) T. Sano and C. R. Cantor, Proc. Natl. Acad. Sci. U. S. A.,
1990, 87, 142–146; (d) S.-C. Wu, M. H. Qureshi and S. L. Wong, Protein
Expression Purif., 2002, 24, 348–356; (e) S.-C. Wu and S.-L. Wong,
Appl. Environ. Microbiol., 2002, 68, 1102–1108.
In summary, our work demonstrates that it is possible to apply
the methods of directed evolution to increase and/or to invert
enantioselectivity of a hybrid catalyst composed of a synthetic
achiral transition metal catalyst anchored to a host protein. Due to
the problems associated with the expression system, the full
potential of this novel approach to asymmetric catalysis was not
tested in the present system. However, proof-of-principle has been
achieved for the first time, providing incentive for designing and
testing other systems.18
We thank T. Sano (Columbia University) for plasmid pUC-SZ.
Support from EU MRTN-CT-2003-505020 (IBAAC) and the
Fonds der Chemischen Industrie is gratefully acknowledged.
Notes and references
1 (a) Methods and Molecular Biology, (Directed Enzyme Evolution:
Screening and Selection Methods), ed. F. H. Arnold and G. Georgiou,
Humana Press, Totowa, New Jersey, 2003, vol. 230; (b) Evolutionary
Methods in Biotechnology (Clever Tricks for Directed Evolution), ed.
S. Brakmann and A. Schwienhorst, Wiley-VCH, Weinheim, Germany,
2004; (c) S. V. Taylor, P. Kast and D. Hilvert, Angew. Chem., 2001, 113,
3408–3436, (Angew. Chem., Int. Ed., 2001, 40, 3310–3335); (d)
K. A. Powell, S. W. Ramer, S. B. del Cardayre´, W. P. C. Stemmer,
M. B. Tobin, P. F. Longchamp and G. W. Huisman, Angew. Chem.,
2001, 113, 4068–4080, (Angew. Chem., Int. Ed., 2001, 40, 3948–3959); (e)
N. J. Turner, Trends Biotechnol., 2003, 11, 474–478; (f) S. Lutz and
W. M. Patrick, Curr. Opin. Biotechnol., 2004, 15, 291–297.
2 (a) M. T. Reetz, A. Zonta, K. Schimossek, K. Liebeton and K.-E.
Jaeger, Angew. Chem., 1997, 109, 2961–2963, (Angew. Chem., Int. Ed.
Engl., 1997, 36, 2830–2832); (b) K. Liebeton, A. Zonta, K. Schimossek,
M. Nardini, D. Lang, B. W. Dijkstra, M. T. Reetz and K.-E. Jaeger,
Chem. Biol., 2000, 7, 709–718; (c) M. T. Reetz, S. Wilensek, D. Zha and
K.-E. Jaeger, Angew. Chem., 2001, 113, 3701–3703, (Angew. Chem., Int.
Ed, 2001, 40, 3589–3591); (d) M. T. Reetz, Proc. Natl. Acad. Sci. U. S. A.,
2004, 101, 5716–5722.
12 A. Gallizia, C. de Lalla, E. Nardone, P. Santambrogio, A. Brandazza,
A. Sidoli and P. Arosio, Protein Expression Purif., 1998, 14, 192–196.
13 F. W. Studier, Protein Expression Purif., 2005, 41, 207–234.
14 M. Maywald, Dissertation, Ruhr-Universita¨t Bochum, Germany, 2005.
15 M. T. Reetz, M. Bocola, J. D. Carballeira, D. Zha and A. Vogel,
Angew. Chem., 2005, 117, 4264–4268, (Angew. Chem., Int. Ed., 2005, 44,
4192–4196).
16 M. T. Reetz, L.-W. Wang and M. Bocola, Angew. Chem., 2006, 118,
1258–1263, (Angew. Chem., Int. Ed., 2006, 45, 1236–1241), and
corrigendum, M. T. Reetz, L.-W. Wang and M. Bocola, Angew.
Chem., 2006, 118, 2556, (Angew. Chem., Int. Ed., 2006, 45, 2494).
17 P. C. Weber, D. H. Ohlendorf, J. J. Wendoloski and F. R. Salemme,
Science, 1989, 243, 85–88.
3 (a) D. Zha, S. Wilensek, M. Hermes, K.-E. Jaeger and M. T. Reetz,
Chem. Commun., 2001, 2664–2665; (b) see also: O. May, P. T. Nguyen
and F. H. Arnold, Nat. Biotechnol., 2000, 18, 317–320.
18 M. T. Reetz and N. Jiao, Angew. Chem., 2006, 118, 2476–2479, (Angew.
Chem. Int. Ed., 2006, 45, 2416–2419).
4320 | Chem. Commun., 2006, 4318–4320
This journal is ß The Royal Society of Chemistry 2006