Macromolecules, Vol. 37, No. 10, 2004
ATRP of Glycidyl Methacrylate 3621
of the bromine end groups is present in PGMA. The
expanded ESI MS region is shown in Figure 13b. This
is also a supporting evidence for the observed high
thermal stability of PGMA-Br prepared by CuBr/BPN,
suggesting virtually the absence of termination reac-
tions.
gation, and therefore better control of molecular weight
and polydispersities. The use of the CuBr/ClPN initia-
tion system essentially proceeds through an uncon-
trolled polymerization, which is likely due to the strong
C-Cl bond and inefficient initiation. The variation of
alkyl chain length from n-propyl to n-octyl does not seem
to have an effect on the rate of polymerization and at
least 2 mol equiv ligand to copper salt being required
for optimum rate of polymerization. Increase in ligand
concentration slightly decreases the rate of polymeri-
zation. ESI MS suggests that there was no significant
loss of bromine end groups present in the polymer chain,
and doubly charged species were more intense than
singly charged species. The TG spectra of PGMA
indicate that the CuBr/PPMI/BPN system show an
absence of head-to-head, vinylidene end groups, and
high thermal stability compared to the mixed halide
initiation system and free radical polymerization.
Th er m a l Sta bility of P GMA. The thermal stability
of polymer is in direct relationship with the polymer
structure, and therefore one could expect desirable
information on the regioselectivity and the extent of
termination reactions during the polymerization pro-
1
3,32
cess.
Figure 14a shows the TG spectra of PGMA
synthesized via five different initiating systems: (1) by
conventional free-radical polymerization (FRP) using
3
3
AIBN initiator (Mn ) 91 850, Mw/Mn ) 1.49); (2) by
ATRP (a) CuBr/BPN (Mn ) 6800, Mw/Mn ) 1.30), (b)
CuBr/ClPN (Mn ) 15 750, Mw/Mn ) 1.76), (c) CuCl/ClPN
Mn ) 19 560, Mw/Mn ) 2.14),34 and (d) CuCl/BPN (Mn
(
)
8100, Mw/Mn ) 1.35). The DTG spectra of PGMA
Ack n ow led gm en t. Mr. R. Krishnan thanks the
Council of Scientific and Industrial Research (CSIR,
New Delhi), India for an award of Senior Research
Fellowship.
synthesized via five different initiating systems is shown
in Figure 14b. PGMA produced by CuCl/BPN displays
a three-step degradation corresponding to (a) head-to-
head linkage (around 80-190 °C), (b) chain-end initia-
tion from the vinylidine ends (around 190-237 °C), and
Su p p or tin g In for m a tion Ava ila ble: The preparation
(
2
c) a random scission with in the polymer chain (around
37-377 °C) (Figure 14b). The first two steps (a, b) are
1
13
and characterization of ligands (FT-IR, H and C NMR),
1
polymers ( H NMR, TG/DTA), and kinetic results. This mate-
more pronounced than in PGMA prepared from CuBr/
BPN, indicating the termination reactions resulting in
head-to-head linkages and vinylidene end groups. Ther-
mal degradation of PGMA synthesized by ATRP with
the CuBr/PPMI/BPN initiation system shows a single
step degradation around 400 °C, originating only from
random scission of polymer chain. This polymer is about
rial is available free of charge via the Internet at http://
pubs.acs.org.
Refer en ces a n d Notes
(
1) Szwarc, M. Nature (London) 1956, 178, 1168.
(2) Szwarc, M.; Levy, M.; Milkovich, R. J . Am. Chem. Soc. 1956,
7
8, 2657.
8
0 °C more stable than the PGMA produced by the FRP
(
3) Webster, O. W. Science 1991, 251, 887.
method. This result further indicates the absence of
abnormal linkages, such as head-to-head, and vi-
nylidene end groups. Therefore, this confirms the high
regioselectivity and complete absence of termination
reactions when using the CuBr/BPN system, whereas
the other three combinations such as CuCl/ClPN, CuCl/
BPN, and CuBr/ClPN show three-step degradations like
FRP, indicating head-to-head and vinylidene linkages
present in the polymer chains. This suggests that the
GMA polymerization by ATRP other than CuBr/BPN
systems shows the extent of termination reactions
during the polymerization.
(4) (a) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer,
G. K. Macromolecules 1993, 26, 2987. (b) Hawker, C. J .
Trends Polym. Sci. 1994, 4, 183. (c) Hawker, C. J .; Bosmon,
A. W.; Harth, E. Chem. Rev. 2001, 101, 3661.
(
5) Wang, J .-S.; Matyjaszewski, K. J . Am. Chem. Soc. 1995, 117,
5614.
(6) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T.
Macromolecules 1995, 28, 1721.
(
7) Chiefari, J .; Chong, Y. K.; Ercole, F.; Krstina, J .; J effery, J .;
Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. G.; Moad, C. L.;
Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998,
31, 5559.
(
8) Webster, O. W.; Hertler, W. R.; Sogah, D. Y.; Farnham, W.
B.; Rajan Babu, T. V. J . Am. Chem. Soc. 1983, 105, 5706.
9) (a) Wang, J .-S.; Matyjaszewski, K. Macromolecules 1995, 28,
(
7
572. (b) Qiu, J .; Matyjaszewski, K. Macromolecules 1997,
Con clu sion s
30, 5643.
(
10) (a) Wang, J .-S.; Matyjaszewski, K. Macromolecules 1995, 28,
A range of Schiff base ligands, initiators, and solvents
in conjunction with Cu(I)X have been shown to be
effective for the homogeneous controlled atom transfer
radical polymerization of glycidyl methacrylate at room
temperature. Kinetic results showed an apparent 0.8
order dependence of the rate of polymerization on the
concentration of initiator, and there is slight deviation
from the first-order kinetics. Bulk and diphenyl ether
solution polymerization show a better control of polym-
erization with quite narrow polydispersities. No polym-
erization in nonpolar solvents, deviation from theoreti-
cal molecular weight, and slightly higher polydispersities
were observed in polar solvents at room temperature.
BPN and M 2-BP show a better control of polymeriza-
tion with faster initiation and slower propagation, and
7901. (b) Grimaud, T.; Matyjaszewski, K. Macromolecules
1
997, 30, 2216.
(
11) Matyjaszewski, K.; J o, S. M.; Paik, H.-J .; Gaynor, S. G.
Macromolecules 1997, 30, 6398.
12) Percec, V.; Barboiu, B.; Neumann, A.; Ronda, J . C.; Zhao, M.
Macromolecules 1996, 29, 3665.
(
(13) Granel, C.; Dubois, P.; J erome, R.; Teyssie, P. Macromolecules
1
996, 29, 8576.
(
14) Lecomte, P.; Drapier, I.; Dubois, P.; Teyssie, P.; J erome, R.
Macromolecules 1997, 30, 7631.
15) (a) Louie, J .; Grubbs, R. H. Chem. Commun. 2000, 1479. (b)
Ando, T.; Kamigaito, M.; Sawamoto, M. Macromolecules 1997,
(
3
0, 4507.
16) (a) Matyjaszewski, K.; Xia, J . Chem. Rev. 2001, 101, 2921.
b) Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001,
01, 3686 and references therein.
(
(
1
(17) Wang, X.-S.; Luo, N.; Ying, S. K. Polymer 1999, 40, 4157.
(18) (a) Teodorescu, M.; Matyjaszewski, K. Macromolecules 1999,
3
2, 4826. (b) Teodorescu, M.; Matyjaszewski, K. Macromol.
1
-PEBr shows a curvature in first-order kinetic plot and
Rapid Commun. 2000, 21, 190. (c) Rademacher, J . T.; Baum,
M.; Pallack, M. E.; Brittain, W. J .; Simonsick, W. J . Macro-
molecules 2000, 33, 284. (d) Zhang, H.; Xia, J .; Matyjaszewski,
K. Macromolecules 1998, 31, 5167.
uncontrolled molecular weight was observed, indicating
that termination was taking place. The mixed halide
system CuCl/BPN gave faster initiation, slower propa-