1
8
that can be quickly and efficiently labelled with [ F]-fluoride
in mild aqueous conditions and without need for complex
purification steps. We screened a number of likely inorganic
materials for this property, at the same time keeping in mind the
need for a high degree of biocompatibility and low toxicity. Two
materials emerged satisfying both requirements: hydroxyapatite
and aluminium hydroxide. The factors affecting the binding
of fluoride to these particles and the stability of the bond
once formed were studied under biological conditions. The
radiolabelling of hydroxyapatite proved to be robust, resistant
to a variety of potential inhibitors, and adequate for in vivo
imaging applications. The particles are prone to aggregation
but this can be minimised by surface modification with
alendronate or PEG while still retaining adequate capacity for
radiolabelling. The labelling is stable in vivo unless the particles
are taken up by the reticuloendothelial system, whereupon
degradation and release of fluoride takes place over a period of
several hours. It has been shown previously that hydroxyapatite
particles are readily surface-modified by bisphosphonates (as
seen in this case with alendronate), providing a means of
attaching targeting functionality or other radionuclides using
Acknowledgements
We thank Ms Kelly Rausch (NIH, Bethesda, USA) for providing
a sample of Alhydrogel . This work was funded by the Centre
TM
of Excellence in Medical Engineering funded by the Wellcome
Trust and EPSRC under grants (WT 088641/Z/09/Z). MJ-O
was supported by an EPSRC postdoctoral fellowship at the Life
Sciences Interface. PAW was supported by a Harris studentship.
We thank the Wellcome Trust for an equipment grant for purchase
of the PET-CT scanner.
References
1
2
M. Cametti and K. Rissanen, Chem. Commun., 2009, 2809.
T. W. Hudnall, C. W. Chiu and F. P. Gabbai, Acc. Chem. Res., 2009, 42,
3
88.
3 Y. Takahashi, D. A. Pacheco Tanaka, H. Matsunaga and T. M. Suzuki,
J. Chem. Soc. Perkin Trans., 2002, 759.
4
D. J. Schlyer, M. A. Bastos, D. Alexoff and A. P. Wolf, Int. J. Radiat.
Appl. Instrum., Part A, 1990, 41, 531.
5 W. J. McBride, C. A. D’Souza, R. M. Sharkey, H. Karacay, E. A. Rossi,
C.-H. Chang and D. M. Goldenberg, Bioconjugate Chem., 2010, 21,
1
331.
6
7
P. Laverman, W. J. McBride, R. M. Sharkey, A. Eek, L. Joosten, W. J. G.
Oyen, D. M. Goldenberg and O. C. Boerman, J. Nucl. Med., 2010, 51,
454.
W. J. McBride, R. M. Sharkey, H. Karacay, C. A. D’Souza, E. A. Rossi,
P. Laverman, C.-H. Chang, O. C. Boerman and D. M. Goldenberg,
J. Nucl. Med., 2009, 50, 991.
40,41
bisphosphonate conjugates of radionuclides,
proteins and
peptides (unpublished work). We have also shown here that
they can be readily radiolabelled simply by brief incubation
1
8
with [ F]-fluoride in aqueous media, and that the radiolabel
has adequate stability for in vivo imaging. Hydroxyapatite
nanoparticles represent a promising basis for assembly of targeted
8 T. W. Hudnall, T.-P. Lin and F. P. Gabba ´ı , J. Fluorine Chem., 2010, 131,
1182.
9 A. R. Studenov, M. J. Adam, J. S. Wilson and T. J. Ruth, J. Labelled
1
8
PET molecular imaging agents for labelling with [ F]-fluoride.
Aluminium hydroxide gel nanoparticles share the property of
Compd. Radiopharm., 2005, 48, 497.
1
1
0 L. Mu, A. Hohne, P. A. Schubiger, S. M. Ametamey, K. Graham, J. E.
Cyr, L. Dinkelborg, T. Stellfeld, A. Srinivasan, U. Voigtmann and U.
Klar, Angew. Chem., Int. Ed., 2008, 47, 4922.
1
8
highly efficient and convenient radiolabelling with [ F]-fluoride,
and they too are highly biocompatible (the particles used here
are commercially available for use as adjuvants in vaccines).
They also have an extraordinary capacity to sequester a high
payload of fluoride per nanoparticle. Fluoride is known to be
1 P. Bohna, A. Deyine, R. Azzouz, L. Bailly, C. Fiol-Petit, L. Bischoff,
C. Fruit, F. Marsais and P. Vera, Nucl. Med. Biol., 2009, 36,
8
95.
12 R. Schirrmacher, G. Bradtmoller, E. Schirrmacher, O. Thews, J.
Tillmanns, T. Siessmeier, H. G. Buchholz, P. Bartenstein, B. Wangler,
C. M. Niemeyer and K. Jurkschat, Angew. Chem., Int. Ed., 2006, 45,
42
capable of occupying the hydroxide sites in hydroxyapatite and
we speculate that hydroxide ions may be displaced by fluoride
at the crystal surface; alternatively or additionally hydrogen
fluoride may be bound by hydrogen bonding or dipolar bonds
at the crystal surface, since the experimental conditions are not
basic. Similarly, in aluminium hydroxide, fluoride may be bound
directly to aluminium ions by displacement of hydroxide, given
6
047.
13 S. K. Nandy and M. G. R. Rajan, J. Radioanal. Nucl. Chem., 2010, 286,
241.
1
4 M. Jauregui-Osoro, K. Sunassee, A. J. Weeks, D. J. Berry, R. L. Paul,
M. Cleij, J. Banga, M. J. O’Doherty, P. K. Marsden, S. E. M. Clarke,
J. R. Ballinger, I. Szanda, S. Y. Cheng and P. J. Blower, Eur. J. Nucl.
Med. Mol. Imaging, 2010, 37, 2108.
6,7
15 V. E. Badillo-Almaraz, J. Armando Flores, H. Arriola, F. A. L o´ pez and
its known ability to coordinate strongly to aluminium ions.
L. Ruiz-Ramirez, J. Radioanal. Nucl. Chem., 2007, 271, 741.
6 M. Motskin, D. M. Wright, K. Muller, N. Kyle, T. G. Gard, A. E. Porter
However, they are subject to more rapid degradation in the
biological milieu than hydroxyapatite, and this degradation needs
to be curtailed by further modification before use in imaging
applications, except for very short time scale studies. Because of
the simplicity of the radiolabelling, which eliminates the need
for costly robotics for complex automated synthesis which often
1
and J. N. Skepper, Biomaterials, 2009, 30, 3307.
17 J. F. Volker, H. Carpenter Hodge, H. J. Wilson and S. N. van Voorhis,
J. Biol. Chem., 1940, 134, 543.
8 N. L. Ho, T. Ishihara, S. Ueshima, H. Nishiguchi and Y. Takita,
1
J. Colloid Interface Sci., 2004, 272, 399.
19 S. Samatya, U. Yuksel, M. Yuksel and N. Kabay, Sep. Sci. Technol.,
2007, 42, 2033.
1
8
limits the wider application of F-labelled radiopharmaceuticals,
both hydroxyapatite and aluminium hydroxide provide
2
2
2
0 H. M. Kao and Y. C. Liao, J. Phys. Chem. C, 2007, 111,
a
4
495.
promising basis for development of biocompatible, low-toxicity
nanoparticulate contrast agents for multimodality molecular
imaging in vivo. Further work is required to develop approaches
to modify the surface to attach a range of biological targeting
molecules, modifying aggregation, reticulendothelial uptake and
providing molecular targeting. For molecular targeting purposes,
hydroxyapatite nanoparticles can be surface-modified with
bisphosphonate bioconjugates of peptides and proteins; synthesis
of such bioconjugates will be described in future publications.
1 A. R. Bassindale, M. Pourny, P. G. Taylor, M. B. Hursthouse and M. E.
Light, Angew. Chem., Int. Ed., 2003, 42, 3488.
2 R. Ting, C. Harwig, U. auf dem Keller, S. McCormick, P. Austin, C. M.
Overall, M. J. Adam, T. J. Ruth and D. M. Perrin, J. Am. Chem. Soc.,
2
008, 130, 12045.
23 L. E. L. Hammari, A. Laghzizila, P. Barboux, K. Lahlil and A. Saoiabi,
J. Hazard. Mater., 2004, 114, 41.
2
2
4 N. K. Devaraj, E. J. Keliher, G. M. Thurber, M. Nahrendorf and R.
Weissleder, Bioconjugate Chem., 2009, 20, 397.
5 M. J. Welch, C. J. Hawker and K. L. Wooley, J. Nucl. Med., 2009, 50,
1743.
6
236 | Dalton Trans., 2011, 40, 6226–6237
This journal is © The Royal Society of Chemistry 2011