Journal of the American Chemical Society
Article
ORCID
head-on (apical) hydroxamate coordination to complete a
pseudotetrahedral geometry. This geometry, combined with the
linearity of linker 1, would align the C3 axes of the connected
ferritin nodes to yield cubic lattice symmetry, as observed in the
crystal structure of 1−Zn−ferritin. In contrast, for Ni−ferritin,
whose octahedral Ni(II) centers would prefer a “side-on”
attachment by the hydroxamate moiety, the linear linker 1
would offset the ferritin C3 axes to yield a tetragonal lattice
(Figure S6). Conversely, the “bent” linker 4 could yield a cubic
or tetragonal lattice symmetry through side-on Ni(II)
coordination, while the apical Zn(II) and Co(II) coordination
leads to a tetragonal lattice. Such models are more difficult to
propose for linker 5, whose inherently higher flexibility could
be expected to dampen the influence of metal−hydroxamate
coordination geometry on the lattice structure. Regardless,
further sc-XRD characterization will be necessary to probe the
validity of these structural models.
Interestingly, linkers 2 and 3 always yield tetragonal lattices
regardless of the metal component they are paired with. Since
these two ligands display the same relative hydroxamate
orientations (“parallel but offset”), they also provide a valid
point of comparison in terms of how the linker dimensions
affect lattice metrics. Indeed, we observe that the longer linker 3
consistently produces a larger tetragonal distortion (|a − c| ≥
11.8 Å) than 2 (|a − c| ≤ 5.0 Å) for all metallo−ferritin nodes.
These observations indicate that synthetic linkers can also
modulate the unit cell dimensions of ferritin−MOFs.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Drs. Milan Gembicky, Curtis Moore, and Steven
Weigand for assistance with sc-XRD and SAXS measurements.
This work was primarily funded by the U.S. DOE (BES,
Division of Materials Sciences, Biomolecular Materials
Program, DE-FG02-10ER46677 to F.A.T.). Additional support
was provided by NSF (ligand synthesis, DMR-1602537 to
F.A.T.) Crystallographic data were collected at SSRL,
supported by the U.S. DOE (Office of Science, BES and
BER), as well as by the NIH. SAXS experiments were
performed at APS, a DOE Office of Science User Facility
operated by Argonne National Laboratory under Contract No.
DE-AC02-06CH11357.
REFERENCES
■
(1) Mann, S. Angew. Chem., Int. Ed. 2008, 47 (29), 5306−5320.
(2) Yang, L.; Liu, A.; Cao, S.; Putri, R. M.; Jonkheijm, P.;
Cornelissen, J. J. Chem. - Eur. J. 2016, 22 (44), 15570−15582.
(3) Ueno, T. Chem. - Eur. J. 2013, 19 (28), 9096−9102.
(4) Yeates, T. O.; Liu, Y.; Laniado, J. Curr. Opin. Struct. Biol. 2016,
39, 134−143.
(5) Kobayashi, N.; Arai, R. Curr. Opin. Biotechnol. 2017, 46, 57−65.
(6) Salgado, E. N.; Radford, R. J.; Tezcan, F. A. Acc. Chem. Res. 2010,
43 (5), 661−672.
CONCLUSIONS
■
(7) Radford, R. J.; Brodin, J. D.; Salgado, E. N.; Tezcan, F. A. Coord.
Chem. Rev. 2011, 255 (7−8), 790−803.
Here we have reported the construction and characterization of
a large library of 3D, crystalline protein−MOFs through a
combination of three different metallo−ferritin nodes and five
synthetic linkers bearing hydroxamate head groups. Our results
establish that the metal ion and the synthetic linker
components can be varied in a modular fashion to influence
the structural parameters (i.e., lattice symmetries and unit cell
dimensions) of protein−MOFs, akin to conventional MOFs.
Despite the remarkable size discrepancy between the ferritin
nodes and the organic linkers, the self-assembly of the ferritin−
MOFs is highly robust, emphasizing the utility of metal
coordination interactions in controlling protein self-assembly.
Excitingly, by virtue of the flexibility of the linkers and/or the
fluxionality of metal-linker bonds, several ferritin−MOFs have
been observed to adopt multiple lattice conformations, which
suggests that they may display dynamic behavior. Some of our
immediate goals include the utilization of linkers whose lengths
approximate the dimensions of the protein nodes and
investigating the emergent functional/physical properties of
protein−MOFs (e.g., their potential dynamic nature) arising
from their unique, tripartite composition.
(8) Lai, Y.-T.; Hura, G. L.; Dyer, K. N.; Tang, H. Y.; Tainer, J. A.;
Yeates, T. O. Sci. Adv. 2016, 2 (12), e1501855.
(9) King, N. P.; Bale, J. B.; Sheffler, W.; McNamara, D. E.; Gonen, S.;
Gonen, T.; Yeates, T. O.; Baker, D. Nature 2014, 510 (7503), 103−
108.
(10) Sciore, A.; Su, M.; Koldewey, P.; Eschweiler, J. D.; Diffley, K. A.;
Linhares, B. M.; Ruotolo, B. T.; Bardwell, J. C.; Skiniotis, G.; Marsh, E.
N. G. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (31), 8681−8686.
(11) Ni, T. W.; Tezcan, F. A. Angew. Chem., Int. Ed. 2010, 49 (39),
7014−7018.
(12) Brodin, J. D.; Ambroggio, X. I.; Tang, C. Y.; Parent, K. N.;
Baker, T. S.; Tezcan, F. A. Nat. Chem. 2012, 4 (5), 375−382.
(13) Brodin, J. D.; Smith, S. J.; Carr, J. R.; Tezcan, F. A. J. Am. Chem.
Soc. 2015, 137 (33), 10468−10471.
(14) Yang, G.; Zhang, X.; Kochovski, Z.; Zhang, Y.; Dai, B.; Sakai, F.;
Jiang, L.; Lu, Y.; Ballauff, M.; Li, X. J. Am. Chem. Soc. 2016, 138 (6),
1932−1937.
(15) Ballister, E. R.; Lai, A. H.; Zuckermann, R. N.; Cheng, Y.;
Mougous, J. D. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (10), 3733−
3738.
(16) Sinclair, J. C.; Davies, K. M.; Venien-Bryan, C.; Noble, M. E. M.
Nat. Nanotechnol. 2011, 6 (9), 558−562.
(17) Gonen, S.; DiMaio, F.; Gonen, T.; Baker, D. Science 2015, 348
(6241), 1365−1368.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
(18) Suzuki, Y.; Cardone, G.; Restrepo, D.; Zavattieri, P. D.; Baker,
T. S.; Tezcan, F. A. Nature 2016, 533 (7603), 369−373.
(19) Lanci, C. J.; MacDermaid, C. M.; Kang, S.-g.; Acharya, R.;
North, B.; Yang, X.; Qiu, X. J.; DeGrado, W. F.; Saven, J. G. Proc. Natl.
Acad. Sci. U. S. A. 2012, 109 (19), 7304−7309.
(20) Sakai, F.; Yang, G.; Weiss, M. S.; Liu, Y.; Chen, G.; Jiang, M.
Nat. Commun. 2014, 5, 4634.
(21) Kunzle, M.; Eckert, T.; Beck, T. J. Am. Chem. Soc. 2016, 138
S
Additional experimental details (Materials and Methods),
tables (Supporting Tables 1 and 2), and figures
(Supporting Figures 1−18) (PDF)
̈
(39), 12731−12734.
AUTHOR INFORMATION
Corresponding Author
■
(22) Kostiainen, M. A.; Hiekkataipale, P.; Laiho, A.; Lemieux, V.;
Seitsonen, J.; Ruokolainen, J.; Ceci, P. Nat. Nanotechnol. 2012, 8 (1),
52−56.
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX