RSC Advances
Page 6 of 8
ARTICLE
DOI: 10.1039/C5RA26009D
HPCMsꢀ1 as the support significantly increased the conversion b EMS Energy Institute, PSUꢀDUT Joint Center for Energy Research,
of CO2 to 33.4%, decreased the selectivity of CO to 38.9% as Department of Energy & Mineral Engineering, and Department of
=
+
well as increased the selectivity of high value C2ꢀ4 and C5
Chemical Engineering Pennsylvania State University, University Park,
hydrocarbons to 18.0% and 18.1%, respectively. Pennsylvania 16802, United States. Fax: 814ꢀ865ꢀ3573; Tel: 814ꢀ863ꢀ
Characterization and catalytic performance results show that 4466; Eꢀmail: csong@psu.edu.
the HPCMs is a superior support of FeK for minimizing the †Electronic Supplementary Information (ESI) available: [HRTEM image
nanoparticle size and enhancing the FeꢀK interaction for of HPCMsꢀ1, Raman spectra of HPCMsꢀ1 after thermal treatment at
promoting catalytic performance of CO2 hydrogenation.
different temperatures under N2].
Table 2 CO2 conversion and selectivity of Fe/AC, K/AC, FeꢀK/AC and
FeꢀK/ HPCMsꢀ1, respectively. Reaction conditions: n (H2)/n (CO2) =3
1. C. Liang, Z. Li and S. Dai, Angew. Chem. Int. Ed, 2008, 47, 3696ꢀ
3717.
o
(molar ratio); P=3 MPa; T=400 C and the space velocity was 3600
mlgꢀ1hꢀ1, time on stream 5h.
2. S. Wang, C. Han, J. Wang, J. Deng, M. Zhu, J. Yao, H. Li and Y.
Wang, Chem. Mater., 2014, 26, 6872ꢀ6877.
CO2
Conv.
(%)
Selectivity (%)
3. B. Zhu, K. Li, J. Liu, H. Liu, C. Sun, C. E. Snape and Z. Guo, J.
Catalyst
=
0
+
Mater. Chem. A, 2014, 2, 5481ꢀ5489.
CO CH4 C2ꢀ4
C2ꢀ4
C5
4. M. Park, J. Ryu, Y. Kim and J. Cho, Energy Environ. Sci., 2014,
3727ꢀ3735.
7,
Fe/AC
K/AC
FeꢀK/AC
FeꢀK/
5.6
15.6
27.0
66.3 24.6
93.6 4.6
92.5 4.2
0.4
0.1
0.6
8.7
1.7
2.4
0
0
0.3
5. M. Li, C. Liu, H. Cao, H. Zhao, Y. Zhang and Z. Fan, J. Mater. Chem.
A, 2014, , 14844.
2
6. L. Zhou, H. Cao, S. Zhu, L. Hou and C. Yuan, Green Chem., 2015,
17, 2373ꢀ2382.
33.4
38.9 13.5
18.0
11.5
18.1
HPCMsꢀ1
7. L. Zhu, Q. Gao, Y. Tan, W. Tian, J. Xu, K. Yang and C. Yang,
Microporous and Mesoporous Mater., 2015, 210, 1ꢀ9.
8. W. Nickel, M. Oschatz, M. v. d. Lehr, M. Leistner, G.ꢀP. Hao, P.
Adelhelm, P. Müller, B. M. Smarsly and S. Kaskel, J. Mater. Chem.
4 Conclusions
In this work, hierarchical porous carbon monoliths have been
successfully synthesized by an efficient and low cost strategy
from cokeꢀdeposited spent zeolite catalyst. The resulting carbon
A, 2014,
2, 12703.
9. P. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J.
Brückner, H. Althues and S. Kaskel, Adv. Funct. Mater., 2015, 25
,
exhibits
a
controlled morphology,
a
high degree of
287ꢀ297.
graphitization and a mesoꢀmacro porous structure. Such
hierarchical porous carbon was found to be a superior support
of FeK for minimizing the nanoparticle size and enhancing the
FeꢀK interaction for promoting catalytic performance of CO2
hydrogenation.
10. L. Song, L. Li, X. Gao, J. Zhao, T. Lu and Z. Liu, J. Mater. Chem. A,
2015, , 6862ꢀ6872.
3
11. S. D. C. Liang, J. Am. Chem. Soc., 2006, 128, 5316ꢀ5317.
12. C. Liang, K. Hong, G. A. Guiochon, J. W. Mays and S. Dai, Angew.
Chem. Int. Ed, 2004, 43, 5785ꢀ5789.
The present strategy in this work can be used for preparing a
wide range of synthetic hierarchical porous carbon materials,
because the spent catalyst with specific channels and
morphologies can be selected to obtain the carbon material we
need. For example, some spent zeolite catalysts with a large
microꢀpore size (e.g. Y or Beta) may be used to synthesize
microporous carbon material with high surface area.
13. S. Tanaka, N. Nishiyama, Y. Egashira and K. Ueyama, Chem.
Commun., 2005, 2125ꢀ2127.
14. A. D. Roberts, S. Wang, X. Li and H. Zhang, J. Mater. Chem. A,
2014, 2, 17787ꢀ17796.
15. Z. Qin, L. Lakiss, L. Tosheva, J.ꢀP. Gilson, A. Vicente, C. Fernandez
and V. Valtchev, Adv. Funct. Mater., 2014, 24, 257ꢀ264.
16. S. Mitchell, N. L. Michels, K. Kunze and J. PerezꢀRamirez, Nature
Chem., 2012,
4, 825ꢀ831.
Acknowledgements
17. S. Müller, Y. Liu, M. Vishnuvarthan, X. Sun, A. C. van Veen, G. L.
Haller, M. SanchezꢀSanchez and J. A. Lercher, J. Catal., 2015, 325
,
The authors thank the financial support from the National
Natural Science Foundation of China (21306018, 21503029,
21503027) and the Fundamental Research Funds for the Central
Universities (DUT15ZD236, DUT15RC(3)027).
48ꢀ59.
18. F. Schmidt, C. Hoffmann, F. Giordanino, S. Bordiga, P. Simon, W.
CarrilloꢀCabrera and S. Kaskel, J. Catal., 2013, 307, 238ꢀ245.
19. L. R. Aramburo, S. Teketel, S. Svelle, S. R. Bare, B. Arstad, H. W.
Zandbergen, U. Olsbye, F. M. F. de Groot and B. M. Weckhuysen, J.
Catal., 2013, 307, 185ꢀ193.
Notes and references
20. Q. Zhang, S. Hu, L. Zhang, Z. Wu, Y. Gong and T. Dou, Green
Chem., 2014, 16, 77ꢀ81.
a State Key Laboratory of Fine Chemicals, PSUꢀDUT Joint Center for
Energy Research, School of Chemical Engineering, Dalian University of
Technology, Dalian 116024, P. R. China. Fax: +86ꢀ0411ꢀ84986134; Tel:
+86ꢀ0411ꢀ84986133, +86ꢀ0411ꢀ84986134; Eꢀmail: guoxw@dlut.edu.cn
21. T. Mitome, Y. Iwai, Y. Uchida, Y. Egashira, M. Matsuura, K.
Maekawa and N. Nishiyama, J. Mater. Chem. A, 2014,
22. H. Peng, G. Ma, K. Sun, J. Mu and Z. Lei, J. Mater. Chem. A, 2014,
, 17297ꢀ17301.
2, 10104.
2
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012