Edge Article
Chemical Science
25 H. Ishida, T. Terada, K. Tanaka and T. Tanaka, Inorg. Chem.,
1990, 29, 905–911.
Acknowledgements
26 Y. Kuramochi, J. Itabashi, K. Fukaya, A. Enomoto,
M. Yoshida and H. Ishida, Chem. Sci., 2015, 6, 3063–3074.
27 J.-M. Lehn and R. Ziessel, Proc. Natl. Acad. Sci. U. S. A., 1982,
79, 701–704.
Financial support by Grant-in-Aid for Scientic Research on
Innovative Areas “Articial photosynthesis (AnApple)” (Grant
24107005) of Japan Society for the Promotion of Science is
gratefully acknowledged.
28 C. A. Craig, L. O. Spreer, J. W. Otvos and M. Calvin, J. Phys.
Chem., 1990, 94, 7957–7960.
29 V. S. Thoi, N. Kornienko, C. G. Margarit, P. Yang and
C. J. Chang, J. Am. Chem. Soc., 2013, 135, 14413–14424.
References
1 M. Julliard and M. Chanon, Chem. Rev., 1983, 83, 425–506.
¨
2 C. Konigstein, J. Photochem. Photobiol., A, 1995, 90, 141–152. 30 J. Hawecker, J.-M. Lehn and R. Ziessel, J. Chem. Soc., Chem.
¨
3 K. Kalyanasundaram and M. Gratzel, Coord. Chem. Rev.,
Commun., 1983, 536–538.
1998, 177, 347–414.
4 H. Hennig, Coord. Chem. Rev., 1999, 182, 101–123.
31 H. Hukkanen and T. T. Pakkanen, Inorg. Chim. Acta, 1986,
114, L43–L45.
5 A. J. Esswein and D. G. Nocera, Chem. Rev., 2007, 107, 4022– 32 B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe,
4047. M. Furue and O. Ishitani, Inorg. Chem., 2005, 44, 2326–2336.
6 Photocatalysis, ed. C. A. Bignozzi, Springer Berlin Heidelberg, 33 Y. Tamaki, K. Watanabe, K. Koike, H. Inoue, T. Morimoto
Berlin, Heidelberg, 2011, vol. 303.
and O. Ishitani, Faraday Discuss., 2012, 155, 115–127.
7 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 34 J. Grodkowski, D. Behar, P. Neta and P. Hambright, J. Phys.
2013, 113, 5322–5363.
Chem. A, 1997, 101, 248–254.
8 J. Zhao, W. Wu, J. Sun and S. Guo, Chem. Soc. Rev., 2013, 42, 35 H. Takeda, K. Ohashi, A. Sekine and O. Ishitani, J. Am. Chem.
5323–5351. Soc., 2016, 138, 4354–4357.
9 J. R. Darwent, P. Douglas, A. Harriman, G. Porter and 36 J. Chauvin, F. Lafolet, S. Chardon-Noblat, A. Deronzier,
M.-C. Richoux, Coord. Chem. Rev., 1982, 44, 83–126.
10 A. S. Polo, M. K. Itokazu and N. Y. Murakami Iha, Coord.
Chem. Rev., 2004, 248, 1343–1361.
11 J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev.,
2011, 40, 102–113.
12 M. Schulz, M. Karnahl, M. Schwalbe and J. G. Vos, Coord.
Chem. Rev., 2012, 256, 1682–1705.
13 Y. You and W. Nam, Chem. Soc. Rev., 2012, 41, 7061–7084.
M. Jakonen and M. Haukka, Chem.–Eur. J., 2011, 17, 4313–
4322.
37 S. Sato, T. Morikawa, T. Kajino and O. Ishitani, Angew.
Chem., Int. Ed., 2013, 52, 988–992.
38 H. Takeda, H. Koizumi, K. Okamoto and O. Ishitani, Chem.
Commun., 2014, 50, 1491–1493.
39 Y. Tamaki, K. Koike, T. Morimoto and O. Ishitani, J. Catal.,
2013, 304, 22–28.
14 Y. Yamazaki, H. Takeda and O. Ishitani, J. Photochem. 40 T. Morimoto, T. Nakajima, S. Sawa, R. Nakanishi, D. Imori
Photobiol., C, 2015, 25, 106–137. and O. Ishitani, J. Am. Chem. Soc., 2013, 135, 16825–16828.
15 F. Puntoriero, A. Sartorel, M. Orlandi, G. La Ganga, 41 H. Ishida, K. Tanaka and T. Tanaka, Chem. Lett., 1985, 405–
S. Serroni, M. Bonchio, F. Scandola and S. Campagna,
Coord. Chem. Rev., 2011, 255, 2594–2601.
16 T. Morimoto, C. Nishiura, M. Tanaka, J. Rohacova,
406.
42 H. Ishida, K. Tanaka and T. Tanaka, Organometallics, 1987, 6,
181–186.
Y. Nakagawa, Y. Funada, K. Koike, Y. Yamamoto, 43 Y. Tamaki, K. Koike and O. Ishitani, Chem. Sci., 2015, 6,
S. Shishido, T. Kojima, T. Saeki, T. Ozeki and O. Ishitani, J.
Am. Chem. Soc., 2013, 135, 13266–13269.
17 T. Asatani, Y. Nakagawa, Y. Funada, S. Sawa, H. Takeda,
7213–7221.
44 M. Bourrez, F. Molton, S. Chardon-Noblat and A. Deronzier,
Angew. Chem., Int. Ed., 2011, 50, 9903–9906.
T. Morimoto, K. Koike and O. Ishitani, Inorg. Chem., 2014, 45 J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson,
53, 7170–7180.
J. D. Froehlich and C. P. Kubiak, Inorg. Chem., 2013, 52,
2484–2491.
46 H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak and S. M. Cohen,
Inorg. Chem., 2015, 54, 6821–6828.
47 G. J. Stor, S. L. Morrison, D. J. Stuens and A. Oskam,
Organometallics, 1994, 13, 2641–2650.
48 R. A. Baldwin and M. T. Cheng, J. Org. Chem., 1967, 32, 1572–
1577.
49 Y. Fukuda, S. Seto, H. Furuta, H. Ebisu, Y. Oomori and
S. Terashima, J. Med. Chem., 2001, 44, 1396–1406.
50 B. T. Patterson and F. R. Keene, Inorg. Chem., 1998, 37, 645–
650.
51 X.-Q. Zhu, M.-T. Zhang, A. Yu, C.-H. Wang and J.-P. Cheng, J.
Am. Chem. Soc., 2008, 130, 2501–2516.
18 J. Rohacova, A. Sekine, T. Kawano, S. Tamari and O. Ishitani,
Inorg. Chem., 2015, 54, 8769–8777.
19 D. S. C. Black, G. B. Deacon and N. C. Thomas, Inorg. Chim.
Acta, 1981, 54, L143–L144.
20 I. M. Lorkovic, M. S. Wrighton and W. M. Davis, J. Am. Chem.
Soc., 1994, 116, 6220–6228.
21 The number of acquired electrons was conrmed by using
the ow electrolysis method; see ref. 17.
22 A. Ito, Y. Kang, S. Saito, E. Sakuda and N. Kitamura, Inorg.
Chem., 2012, 51, 7722–7732.
23 J. Hawecker, J.-M. Lehn and R. Ziessel, J. Chem. Soc., Chem.
Commun., 1985, 56–58.
24 J.-M. Lehn and R. Ziessel, J. Organomet. Chem., 1990, 382,
157–173.
52 J. V. Caspar and T. J. Meyer, J. Phys. Chem., 1983, 87, 952–957.
This journal is © The Royal Society of Chemistry 2016
Chem. Sci.