Page 9 of 10
Catalysis Science & Technology
DOI: 10.1039/C6CY02536F
tator species and to not contribute significantly to methane for-
Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M.
Tovar, R. W. Fischer, J.K. Nørskov, R. Schlögl, Science, 2012,
336, 893-897.
mation for the methanation reaction11. No carbonyl bands are
observed for the Ni/CeO2 catalyst, only formate and carbonate
bands suggesting a formate/carbonate pathway reaction mecha-
nism. The DRIFTS results suggest that the metal-support interface
for the Rh/CeO2 and Ni/CeO2 catalysts may play an important
role in the CO2 hydrogenation reaction, similar to the reports on
9 F. Studt,I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J.
S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Nat.
Chem., 2014, 6, 320-324.
10 A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P.
Ruiz, Appl. Catal. B, 2012, 113-114, 2-10.
Cu/CeO /TiO (111)29
.
x
2
11 A. Karelovic, P. Ruiz, Appl. Catal. B: Env., 2012, 113-114, 237-
249.
4 Conclusions
Hydrogenation of CO2 at ambient pressure conditions has been
studied over a series of supported Pd-, Rh- and Ni-based cat-
alysts prepared by impregnation. High selectivity to methane
and high CO2 conversion are obtained over the Rh-based cata-
lysts. Our results show that it is possible to produce methane
from CO2 and H2 at ambient pressure and relatively low temper-
ature over Rh/CeO2, Rh/Al2O3 and NiCeO2 catalysts. Methane
is the only hydrocarbon product observed in our analysis. The
results of in situ DRIFTS experiments show that CO2 adsorption
and dissociation occurs over the Rh/Al2O3 catalyst in the pres-
ence of H2, resulting in the formation of linear Rh-CO species,
which accounts for the majority of the adsorbed species formed
12 M. Jacquemin, A. Beuls, P. Ruiz, Cat. Today, 2010, 157, 462-
466.
13 S. Tada, T. Shimizu, H. Kameyama, T. Haneda, R. Kikuchi,
Int. J. Hydrog. Energy, 2012, 37, 5527-5531.
14 S. Brunauer, P. H. Emmett and E. Teller, Journal of the Ameri-
can Chemical Society, 1938, vol. 60, 309-319.
15 P.-A. Carlsson, S. Mollner, K. Arnby, M. Skoglundh, Chem Eng.
Sci., 2004, 59, 4313-4323.
16 D. Pakhare, J. Spivey, Chem. Soc. Rev., 2014, 43, 7813-7837.
17 F. Wang, M. Wei, D.G. Evans, X. Duan, J. Mater. Chem. A,
2016, 4, 5773-5783.
18 F. Solymosi, A. Erdohelyi, T. Bansagi, J. Chem. Soc. Faraday
Trans. 1, 1981, 77, 2645-2657.
◦
during CO2 hydrogenation at 350 C. In contrast the results show
that the methanation reaction mechanism is different over the
Rh/CeO2 catalyst where CO is formed through formate and car-
bonate intermediate species.
19 I.A. Fisher, A.T.Bell, J. Catal., 1996, 162, 54-65.
20 H.Y. Luo, H.W. Zhou, L.W. Lin, D.B. Liang, C. Li, D. Fu, Q. Xin,
J. Catal., 1994, 145, 232-234.
The results, strenghtened by previous studies indicate that a
metal oxide like ceria can interact with CO2 and thus, be a part
of and promote the hydrogenation reaction by direct formation of
surface carbonates and formates.
21 A. Kiennemann, R. Breault, J.-P. Hindermann, M. Laurin, J.
Chem. Soc. Faraday Trans. 1, 1987, 83, 2119-2128.
22 M. Marwood, R. Doepper, A. Renken, Appl. Catal. A., 1997,
151, 223-246.
5 Acknowledgement
23 R.J. Behm, S. Eckle, Y. Denkwitz, J. Catal., 2010, 269, 255-
268.
This work was financially supported by the Swedish Research
Council through the Röntgen-Ångström collaborations "Catalysis
on the atomic scale" (No. 349-2011-6491) and "Time-resolved in
situ methods for design of catalytic sites within sustainable chem-
istry" (No. 349-2013-567) and the Competence Centre for Cataly-
sis, which is financially supported by Chalmers University of Tech-
nology, the Swedish Energy Agency and the member companies:
AB Volvo, ECAPS AB, Haldor Topsøe A/S, Volvo Car Corporation,
Scania CV AB, and Wärtsilä Finland Oy.
24 G.Busca, Phys. Chem. Chem. Phys., 1999, 1, 723-736.
25 D.I. Kondarides, P. Panagiotopoulou, X.E. Verykios, J. Phys.
Chem. C, 2011, 115, 1220-1230.
26 L.F.Liotta, G.A. Martin, G. Deganello, J. Catal., 1996, 164,
322-333.
27 D.C. Upham, A.R. Derk, S. Sharma, H. Metiu, E.W. McFarland,
Catal. Sci. Technol., 2015, 5, 1783-1791
28 A. Karelovic, P. Ruiz, J. Catal., 2013, 301, 141-153.
29 J. Graciani, Science, 2014, 345, 546-550.
References
1 G.A. Olah, Catal. Lett., 2004, 93, 1-2.
2 I. Ganesh, Renewable and Sustainable Energy Reviews, 2014,
31, 221-257.
3 W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev., 2011, 40,
3703-3727.
4 G.W. Busser et al., ACS Catal., 2015, 5(9), 5530-5539.
5 D.T. Whipple, P.J.A, Kenis, J. Phys. Chem. Lett., 2010, 1(24),
3451-3458.
6 J.N. Park, E.W. McFarland, J. Catal., 2009, 266, 92-97.
7 G.C. Chinchen, P.J. Denny, J.R. Jennings, M.S. Spencer, K.C.
Waugh, Appl. Catal., 1988,36, 1-65.
8 M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F.
1–10 | 9