Please do not adjust margins
Journal of Materials Chemistry A
Page 8 of 9
DOI: 10.1039/C8TA05339A
ARTICLE
Journal Name
5
6
7
8
9
S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk,
Angew. Chem. Int. Ed., 2013, 52, 7372.
L. J. Liu, H. L. Zhao, J. M. Andino and Y. Li, ACS Catal., 2012, 2,
1817.
Z. F. Jiang, W. M. Wan, H. M. Li, S. Q. Yuan, H. J. Zhao and P.
K. Wong, Adv. Mater., 2018, 30, 1706108.
S. C. Yan, J. J. Wang, H. L. Gao, N. Y. Wang, H. Yu, Z. S. Li, Y.
Zhou and Z. G. Zou, Adv. Funct. Mater., 2013, 23, 758.
Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C.
Yan and Z. G. Zou, J. Am. Chem. Soc., 2010, 132, 14385.
h), confirming its poor ability to convert CO into CH4. For the
0.3Ta3N5/LaTiO2N, due to the high charge separation, an improved
CH4 yield was also obtained (2.22 μmol/g for 8 h). These results
prove that the product selectivity of CO2 reduction is dependent on
the surface chemistry of Ta3N5 and LaTiO2N.
On the basis of the above results, the product selectivity for
the CO2 reduction over Ta3N5/LaTiO2N heterojunction was proposed
in Fig. 7b. Under the visible light, the lower CB and VB positions of
Ta3N5 induce directional electron flow from CB of LaTiO2N to CB of
Ta3N5 and reversed hole transfer between their VBs. The high CO
selectivity was achieved on (020) surface of Ta3N5 due to the poor
ability in converting -COOH intermediate and the weak CO
adsorption. Meanwhile, the high CH4 selectivity produced on the
LaTiO2N due to the strong CO adsorption and efficiently activating
10 S. J. Xie, Y. Wang, Q. H. Zhang, W. Q. Fan, W. P. Deng and Y.
Wang, Chem. Commun., 2013, 49, 2451.
11 W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M.
Niedzwiedzki, S. Gangopadhywy and P. Biswas, J. Am. Chem.
Soc., 2012, 134, 11276.
12 X. G. Meng, S. X. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang and J.
H. Ye, Chem. Commun., 2014, 50, 11517.
13 S. Neaţu, J. A. Maciá-Agulló, P. Concepción and H. Garcia, J.
Am. Chem. Soc., 2014, 136, 15969.
*
carbon-based precursors to CHx , probably on the La base metal
sites.
14 Q. Q. Lang, Y. J. Yang, Y. Z. Zhu, W. L. Hu, W. Y. Jiang, S. X.
Zhong, P. J. Gong, B. T. Teng, L. H. Zhao and S. Bai, J. Mate.
Chem. A, 2017, 5, 6686.
15 S. C. Yan, L. J. Wan, Z. S. Li and Z. G. Zou, Chem. Commun.,
2011, 47, 5632.
16 J. G. Yu, J. X. Low, W. Xiao, P. Zhou and M. Jaroniec, J. Am.
Chem. Soc., 2014, 136, 8839.
17 J. Mao, T. Y. Peng, X. H. Zhang, K. Li and L. Zan, Catal.
Commun., 2012, 28, 38.
Conclusions
In summary, using the LaTiO2N with exposure of (002) facet and
Ta3N5 with dominant (020) facet as model photocatalysts, we have
showed that the product selectivity for CO2 reduction on
photocatalyst is strongly associated to the kinetics of molecule
activation and intermediate conversion. The (020) surface of Ta3N5 18 Y. Y. Liu, B. B. Huang, Y. Dai, X. Y. Zhang, X. Y. Qin, M. H. Jiang
and M. Whangbo, Catal. Commun., 2009, 11, 210.
19 S. M. Wang, Y. Guan, L. Lu, Z. Shi, S. C. Yan and Z. G. Zou,
Appl. Catal. B Environ., 2018, 224, 10.
20 S. B. Wang, B. Y. Guan, Y. Lu, X. Wen and D. Lou, J. Am.
Chem. Soc., 2017, 139, 17305.
terminated by N atoms exhibits the poor ability in converting -
COOH intermediate and the weak CO adsorption, thus inducing the
high CO selectivity. The high CH4 selectivity on the LaTiO2N is not
facet-dependent, more likely to be dominated by La base metal
*
sites to efficiently activate carbon-based precursors to CHx . Our 21 J. G. Hou, S. Y. Cao, Y. Z. Wu, F. Liang, L. Ye, Z. S. Lin and L. C.
Sun, Nano Energy, 2016, 30, 59.
findings indicated that the surface chemistry of catalyst was a
significant factor for the selective product formation of the
photocatalytic CO2 reduction.
22 M. L. Li, L. X. Zhang, M. Y. Wu, Y. Y. Du, X. Q. Fan, M. Wang, L.
L. Zhang, Q. L. Kong and J. L. Shi, Nano Energy, 2016, 19, 145.
23 J. Rosen, G. S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D. G.
Vlachos and F. Jiao, ACS Catal., 2015, 5, 4293.
24 W. L. Zhu, Y. J. Zhang, H. Y. Zhang, H. F. Lv, Q. Li, R.
Michalsky, A. A. Peterson and S. H. Sun, J. Am. Chem. Soc.,
2014, 136, 16132.
Conflicts of interest
There are no conflicts to declare.
25 D. D. Zhu, J. L. Liu and S. Z. Qiao, Adv. Mater., 2016, 28, 3423.
26 S. Kattel, P. Liu and J. G. Chen, J. Am. Chem. Soc., 2017, 139
9739.
27 Y. F. Ji and Y. Luo, J. Am. Chem. Soc., 2016, 138, 15896.
,
Acknowledgements
28 A. E. Maegli, S. Pokrant, T. Hisatomi, M. Trottmann, K.
,
This work was supported primarily by the National Basic Research
Program of China (2013CB632404), the National Natural Science
Foundation of China (51572121, 21603098 and 21633004), the
Natural Science Foundation of Jiangsu Province (BK20151265,
BK20151383 and BK20150580), the Fundamental Research Funds
for the Central Universities (021314380133 and 021314380084),
the Postdoctoral Science Foundation of China (2017M611784), Six
talent peaks project in Jiangsu Province (YY-013) and the program B
for outstanding PhD candidate of Nanjing University (201702B084).
Domen and A. Weidenkaff, J. Phys. Chem. C, 2013, 118
16344.
29 J. C. Matsubu and V. N. Yang, J. Am. Chem. Soc., 2015, 137
3076.
,
30 L. Lu, B. Wang, S. M. Wang, Z. Shi, S. C. Yan and Z. G. Zou,
Adv. Funct. Mater., 2017, 27, 1702447.
31 R. B. Singh, H. Matsuzaki, Y. Suzuki, K. Seki, T. Minegishi, T.
Hisatomi, K. Domen and A. Furube, J. Am. Chem. Soc., 2014,
136, 17324.
32 M. Sluban, P. Umek, Z. Jagličic, J. Buh, P. Smitek, A. Mrzel, C.
Bittencourt, M. H. Delville, D. Mihailovic and D. Arcon, ACS
Nano, 2015,
33 Y. Qi, S. S. Chen, M. R. Li, Q. Ding, Z. Li, J. Y. Cui, B. B. Dong, F.
X. Zhang and C. Li, Chem. Sci., 2017, , 437.
34 F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt and P. Feng, J.
Am. Chem. Soc., 2010, 132, 11856.
35 M. Batzill, E. H. Morales and U. Diebold, Phys. Rev. Lett.,
2006, 96, 026103.
36 Y. G. Li, H. Song, F. Li, X. Li, Z. R. Lou, Z. Z. Ye and L. P. Zhu,
Nano Energy, 2016, 19, 437.
9, 10133.
References
8
1
2
3
4
J. Ran, M. Jaroniec and S. Z. Qiao, Adv. Mater., 2018, 30,
1704649.
Y. Zheng, W. Q. Zhang, Y. F. Li, J. Chen, B. Yu, J. C. Wang, L.
Zhang and J. J. Zhang, Nano Energy, 2017, 40, 512.
J. H. Wu, Y. Huang, W. Ye and Y. G. Li, Adv. Sci., 2017, 4,
1700194.
W. G. Tu, Y. Zhou and Z. G. Zou, Adv. Mater., 2014, 26, 4607.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins