ChemSusChem
10.1002/cssc.201801373
COMMUNICATION
2 4
a typical experiment, IL containing solution and H SO aqueous solution
Keywords: CO
2
reduction • ionic microhabit • electrolysis
(
0.1 M) were used as cathodic and anodic electrolytes, respectively. The
amount of electrolyte used was 30 mL in all the experiments. Before
measurement, CO was bubbled through the catholyte for 30 min under a
steady follow of 30 mL min . Cyclic voltammograms (CVs) were recorded
at working electrode in ILs/MeCN-H O mixture solution system, Pb as the
conversion • superbase ionic liquids • formic acid
2
-
1
[1]
M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114,
709-1742.
1
2
[
2]
a) M. Y. He, Y. H. Sun, B. X. Han, Angew. Chem. Int. Ed. 2013, 52,
9620-9633; b) C. Costentin, M. Robert, J.-M. Saveant, Chem. Soc.
Rev. 2013, 42, 2423-2436; c) J. Qiao, Y. Liu, F. Hong, J. Zhang,
Chem. Soc. Rev. 2013, 43, 631-675.
working electrode and a platinum gauze as counter electrode, the
reference electrode was 0.01 mol L-1 Ag /Ag formed by dissolving AgClO
+
4
in 0.1 M TBAP-MeCN and separated from the catholyte by a glass frit. The
EIS experiments were carried out inside the two-compartment three-
electrode electrochemical cell by the same workstation, and the Nyquist
[
3]
a) F. Urbain, P. Tang, N. M. Carretero, T. Andreu, L. G. Gerling, C.
Voz, J. Arbiol, J. Ramon Morante, Energy Environ. Sci. 2017, 10,
plot for CO
recorded at an open circuit potential and over a frequency of 100 kHz to
00 mHz with an amplitude of 5 mV. The obtained data from the EIS tests
2
electroreduction in different ILs medium were collected and
2256-2266; b) J. Schneider, H. Jia, K. Kobiro, D. E. Cabelli, J. T.
Muckerman, E. Fujita, Energy Environ. Sci. 2012, 5, 9502-9510; c)
E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, J.
Perez-Ramirez, Energy Environ. Sci. 2013, 6, 3112-3135; d) M.
Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, A. Irabien, Energy
Environ. Sci. 2015, 8, 2574-2599; e) X. Chang, T. Wang, J. Gong,
Energy Environ. Sci. 2016, 9, 2177-2196.
1
were fitted by using the Zview software, and the electrical equivalent circuit
used for simulating the experimental impedance data is given in
Supplementary Figure 6. Mild magnetic stirring was applied during the
process for a better mixing. Controlled potential electrolyses were
2
performed in ILs/MeCN-H O medium, and after a desired electrolysis time,
[
[
4]
5]
a) E. E. Benson, C. P. Kubiak, A. J. Sathrum, J. M. Smieja, Chem.
Soc. Rev. 2009, 38, 89-99; b) H. Mistry, A. S. Varela, C. S. Bonifacio,
I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C.
Yang, P. Strasser, B. R. Cuenya, Nat. Comm. 2016, 7, 12123.
a) C. Wang, Y. Guo, X. Zhu, G. Cui, H. Li, S. Dai, Chem. Commun.
the products were analyzed and quantified.
Products analysis and Calculations
Gaseous products were analyzed and quantified by gas chromatography
2012, 48, 6526-6528; b) F. Ding, X. He, X. Luo, W. Lin, K. Chen, H.
(
GC,Aglient 6820) with TCD and FID detector, and liquid products by
Bruker Avance III 600 HD spectrometer in DMSO-d6 with phenol as
internal standard. Briefly, the gas chromatograph, running N as a carrier
gas, contained a 5A molecular sieve-packed column and haysep D column
which were used together to separate CO , CO and hydrogen, after exiting
Li, C. Wang, Chem. Commun. 2014, 50, 15041-15044; c) C. Wang,
H. Luo, D.-e. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 2010, 49,
2
5978-5981; d) L. A. Blanchard, D. Hancu, E. J. Beckman, J. F.
Brennecke, Nature 1999, 399, 28-29; e) S. Zeng, X. Zhang, L. Bai,
X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem.
Rev. 2017, 117, 9625-9673; f) E. D. Bates, R. D. Mayton, I. Ntai, J.
H. Davis, J. Am. Chem. Soc. 2002, 124, 926-927; g) X. P. Zhang, X.
C. Zhang, H. F. Dong, Z. J. Zhao, S. J. Zhang, Y. Huang, Energy
Environ. Sci. 2012, 5, 6668-6681.
2
the columns, the gas stream was first analyzed by a thermal conductivity
detector (TCD) where hydrogen was detected. The gas stream then
passed through a methanizer where CO and CO were converted to
2
methane for immediate detection by a flame ionization detector (FID)
where the carbon containing gas products were quantified. The peak areas
[
[
[
[
[
6]
R. Vijayraghavan, S. J. Pas, E. I. Izgorodina, D. R. MacFarlane,
Phys. Chem. Chem. Phys. 2013, 15, 19994-19999.
for hydrogen, CO and CO
2
were compared to standards to find the
concentration of each. The current efficiency was calculated as follows[25]
.
7]
G. Gurau, H. Rodriguez, S. P. Kelley, P. Janiczek, R. S. Kalb, R. D.
Rogers, Angew. Chem. Int. Ed. 2011, 50, 12024-12026.
C. M. Wang, X. Y. Luo, H. M. Luo, D. E. Jiang, H. R. Li, S. Dai,
Angew. Chem. Int. Ed. 2011, 50, 4918-4922.
Multiplication of this result by 100% expressed the current efficiency as a
percentage, and total current density and Faradaic efficiency of the
products were calculated on the basis of GC and NMR analysis. The
8]
obtained calibration curve of CO,
supplementary Figure 7.
2
H and HCOOH are shown in
9]
X. Luo, Y. Guo, F. Ding, H. Zhao, G. Cui, H. Li, C. Wang, Angew.
Chem. Int. Ed. 2014, 53, 7053-7057.
10]
B. Gurkan, B. F. Goodrich, E. M. Mindrup, L. E. Ficke, M. Massel, S.
Seo, T. P. Senftle, H. Wu, M. F. Glaser, J. K. Shah, E. J. Maginn, J.
F. Brennecke, W. F. Schneider, J. Phys. Chem. Lett. 2010, 1, 3494-
3499.
Quantum chemical calculations
All calculations were performed using the Gaussian 09 program package.
For each set of calculations, we performed geometry optimization for each
[11]
a) W. Lu, B. Jia, B. Cui, Y. Zhang, K. Yao, Y. Zhao, J. Wang, Angew.
Chem. Int. Ed. 2017, 56, 11851-11854; b) H. Tran Ngoc, P. Simon,
G. Rousse, I. Genois, V. Artero, M. Fontecave, Chem. Sci. 2017, 8,
742-747; c) X. F. Sun, Q. G. Zhu, X. C. Kang, H. Z. Liu, Q. L. Qian,
Z. F. Zhang, B. X. Han, Angew. Chem. Int. Ed. 2016, 55, 6770-6774;
d) D. W. Yang, Q. Y. Li, F. X. Shen, Q. Wang, L. Li, N. Song, Y. N.
Dai, J. Shi, Electrochim. Acta 2015, 189, 32-37.
free anion, the free CO
2 2
molecule, each anion-CO complex and each IL
molecule-CO complex at the B3LYP/6-31++G(d,p) theory level. Then,
2
frequency calculations were performed to confirm that all the structures
correspond to minima that without imaginary frequency.
[
12]
a) C. A. Gunawan, M. C. Ge, C. Zhao, Nat. Comm. 2014, 5, 8; b) M.
Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat.
Mater. 2009, 8, 621-629; c) D. R. MacFarlane, M. Forsyth, P. C.
Howlett, M. Kar, S. Passerini, J. M. Pringle, H. Ohno, M. Watanabe,
F. Yan, W. Zheng, S. Zhang, J. Zhang, Nat. Rev. Mater. 2016, 1,
Acknowledgements
1
5005.
a) B. C. M. Martindale, R. G. Compton, Chem. Commun. 2012, 48,
487-6489; b) L. Y. Sun, G. K. Ramesha, P. V. Kamat, J. F.
This work was financially supported by National Key Projects for
[
[
13]
14]
Fundamental
Research and Development
of
China
6
(
2016YFB0600903), the National Natural Science Fund for
Brennecke, Langmuir 2014, 30, 6302-6308.
Distinguished Young Scholars (21425625), and the National
Natural Science Foundation of China (U1662122, 51574215,
B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple,
P. J. A. Kenis, R. I. Masel, Science 2011, 334, 643-644.
a) E. E. L. Tanner, C. Batchelor-McAuley, R. G. Compton, J. Phys.
Chem. C 2016, 120, 26442-26447; b) M. Asadi, K. Kim, C. Liu, A. V.
21606233).
[15]
This article is protected by copyright. All rights reserved.