Journal of the American Chemical Society
Page 4 of 6
1
5. Shyshkanov, S.; Nguyen, T.; Ebrahim, F. M.; Stylianou, K.; Dyson, P.,
ASSOCIATED CONTENT
Supporting Information
In situ formation of frustrated Lewis pairs in a water-tolerant metal-
organic framework for the transformation of CO . Angew. Chem. Int.
2
Ed. 2019, 58, 5371-5375.
1
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
The Supporting Information is available free of charge on the
ACS Publications website.
6. Voicu, D.; Abolhasani, M.; Choueiri, R.; Lestari, G.; Seiler, C.;
Menard, G.; Greener, J.; Guenther, A.; Stephan, D. W.; Kumacheva, E.,
Experimental Procedures, Figure S1-Figure S15 and
Table S1-S2.
Microfluidic studies of CO sequestration by frustrated Lewis pairs. J.
Am. Chem. Soc. 2014, 136, 3875-3880.
2
1
7. Jiang, Y.; Blacque, O.; Fox, T.; Berke, H., Catalytic CO
assisted by rhenium hydride/B(C frustrated Lewis pairs--metal
hydrides functioning as FLP bases. J. Am. Chem. Soc. 2013, 135, 7751-
2
activation
6 5 3
F )
AUTHOR INFORMATION
7
1
760.
Corresponding Author
8. Liu, L.; Lukose, B.; Ensing, B., A free energy landscape of CO
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
* yongquan@mail.xjtu.edu.cn.
capture by frustrated Lewis pairs. ACS Catal. 2018, 8, 3376-3381.
19. Zhang, S.; Huang, Z. Q.; Ma, Y.; Gao, W.; Li, J.; Cao, F.; Li, L.; Chang, C.
R.; Qu, Y., Solid frustrated-Lewis-pair catalysts constructed by
regulations on surface defects of porous nanorods of CeO . Nat.
2
Commun. 2017, 8, 15266.
Author Contributions
#
S. Z. and Z. X. contributed equally to this work.
2
0. Ma, Y.; Zhang, S.; Chang, C.; Huang, Z.; Ho, J. C.; Qu, Y., Semi-solid
Notes
and solid frustrated Lewis pair catalysts. Chem. Soc. Rev. 2018, 47,
The authors declare no competing financial interests.
5
2
541-5553.
1. Huang, Z. Q.; Liu, L.-P.; Qi, S.; Zhang, S.; Qu, Y.; Chang, C. R.,
ACKNOWLEDGMENTS
2
Understanding all-solid frustrated-Lewis-pair sites on CeO from
theoretical perspectives. ACS Catal. 2018, 8, 546-554.
We acknowledge the financial support from the National
Nature Science Foundation of China (21872109) and the
China Postdoctoral Science Foundation (2018M640994;
2
2. Huang, W.; Gao, Y., Morphology-dependent surface chemistry and
2
catalysis of CeO nanocrystals. Catal. Sci. Technol. 2014, 4, 3772-3784.
2
3. Huang, W., Oxide nanocrystal model catalysts. Acc. Chem. Res.
2
018T111034). Y. Qu is supported by the Cyrus Tang
2016, 49, 520-527.
Foundation through the Tang Scholar program. S. Zhang is
supported by the Fundamental Research Funds for the Central
Universities (xjj2018033). The calculations were performed
by using the HPC Platform at Xi’an Jiaotong University.
24. Nolan, M.; Grigoleit, S.; Sayle, D. C.; Parker, S. C.; Watson, G. W.,
Density functional theory studies of the structure and electronic
structure of pure and defective low index surfaces of ceria. Surf. Sci.
2
005, 576, 217-229.
25. Chen, S.; Cao, T.; Gao, Y.; Li, D.; Xiong, F.; Huang, W., Probing
surface structures of CeO , TiO , and Cu O nanocrystals with CO and
CO chemisorption. J. Phys. Chem. C 2016, 120, 21472-21485.
6. Zhou, H.; Lu, X., Lewis base-CO adducts as organocatalysts for CO
transformation. Sci. China Chem. 2017, 60, 904-911.
2
2
2
REFERENCES
2
2
2
2
1
. Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M., Low-dimensional
catalysts for hydrogen evolution and CO reduction. Nat. Rev. Chem.
018, 2, 0105.
2
27. Han, Q.; Qi, B.; Ren, W.; He, C.; Niu, J.; Duan, C., Polyoxometalate-
based homochiral metal-organic frameworks for tandem asymmetric
transformation of cyclic carbonates from olefins. Nat. Commun. 2015,
2
2. Zhang, L.; Zhao, Z. J.; Wang, T.; Gong, J., Nano-designed
semiconductors for electro- and photoelectro-catalytic conversion of
carbon dioxide. Chem. Soc. Rev. 2018, 47, 5423-5443.
. Liu, Q.; Wu, L.; Jackstell, R.; Beller, M., Using carbon dioxide as a
building block in organic synthesis. Nat. Commun. 2015, 6, 6933.
6, 10007.
28. Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu,
H. C.; Yan, C. H., Shape-selective synthesis and oxygen storage
behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys.
Chem. B 2005, 109, 24380-24385.
3
4. Aresta, M.; Dibenedetto, A.; Angelini, A., Catalysis for the
valorization of exhaust carbon: from CO
fuels. technological use of CO . Chem. Rev. 2014, 114, 1709-1742.
. Zhang, L.; Zhao, Z. J.; Gong, J., Nanostructured materials for
heterogeneous electrocatalytic CO reduction and their related
reaction mechanisms. Angew. Chem. Int. Ed. 2017, 56, 11326-11353.
. Wang, Y. B.; Wang, Y. M.; Zhang, W. Z.; Lu, X. B., Fast CO
2
to chemicals, materials, and
2
9. Huang, W.; Gao, Y., Morphology-dependent surface chemistry and
catalysis of CeO nanocrystals. Catal. Sci. Technol. 2014, 4, 3772-3784.
0. Jain, R.; Dubey, A.; Ghosalya, M. K.; Gopinath, C. S., Gas–solid
2
2
5
3
2
2 2
interaction of H –Ce0.95Zr0.05O : new insights into surface participation
in heterogeneous catalysis. Catal. Sci. Technol. 2016, 6, 1746-1756.
1. Wang, Y.; Chen, Z.; Han, P.; Du, Y.; Gu, Z.; Xu, X.; Zheng, G., Single-
atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic
CO reduction to CH . ACS Catal. 2018, 8, 7113-7119.
2. Bregante, D. T.; Flaherty, D. W., Periodic trends in olefin
6
2
3
sequestration, activation, and catalytic transformation using N-
heterocyclic olefins. J. Am. Chem. Soc. 2013, 135, 11996-12003.
7. Stephan, D. W., The broadening reach of frustrated Lewis pair
chemistry. Science 2016, 354, aff7229.
2
4
3
epoxidation over group IV and V framework-substituted zeolite
catalysts: a kinetic and spectroscopic study. J. Am. Chem. Soc. 2017,
8
. Stephan, D. W., Frustrated Lewis pairs: from concept to catalysis.
Acc. Chem. Res. 2015, 48, 306-316.
. Stephan, D. W., Frustrated lewis pairs. J. Am. Chem. Soc 2015, 137,
10018-10032.
0. Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X.,
Selective reduction of CO to CH by tandem hydrosilylation with
139, 6888-6898.
9
3
3. Vivier, L.; Duprez, D., Ceria-based solid catalysts for organic
chemistry. ChemSusChem 2010, 3, 654-678.
4. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P.,
1
3
2
4
2
Fundamentals and catalytic applications of CeO -based materials.
Chem. Rev. 2016, 116, 5987-6041.
mixed Al/B catalysts. J. Am. Chem. Soc. 2016, 138, 5321-5333.
11. Ménard, G.; Stephan, D. W., Room temperature reduction of CO to
2
methanol by Al-based frustrated Lewis pairs and ammonia borane. J.
Am. Chem. Soc. 2010, 132, 1796-1797.
2
2. Menard, G.; Stephan, D. W., Stoichiometric reduction of CO to CO
3
5. Tian, Z.; Li, J.; Zhang, Z.; Gao, W.; Zhou, X.; Qu, Y., Highly sensitive
and robust peroxidase-like activity of porous nanorods of ceria and
their application for breast cancer detection. Biomaterials 2015, 59,
1
1
3
16-124.
by aluminum-based frustrated Lewis pairs. Angew. Chem. Int. Ed.
2011, 50, 8396-8399.
6. Liu, X.; Zhou, K.; Wang, L.; Wang, B.; Li, Y., Oxygen vacancy clusters
promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc.
009, 131, 3140-3141.
37. Wu, Z.; Li, M.; Overbury, S. H., On the structure dependence of CO
oxidation over CeO nanocrystals with well-defined surface planes. J.
Catal. 2012, 285, 61-73.
8. Li, Y.; Zhang, B.; Tang, X.; Xu, Y.; Shen, W., Hydrogen production
1
3. Blondiaux, E.; Pouessel, J.; Cantat, T., Carbon dioxide reduction to
methylamines under metal-free conditions. Angew. Chem. Int. Ed.
014, 53, 12186-12190.
4. Chen, L.; Liu, R.; Yan, Q., Polymer meets frustrated Lewis pair:
second-generation CO -responsive nanosystem for sustainable CO
conversion. Angew. Chem. Int. Ed. 2018, 57, 9336-9340.
2
2
1
2
2
2
3
ACS Paragon Plus Environment