Communication
ChemComm
11 H. J. Schneider and R. M. Strongin, Acc. Chem. Res., 2009, 42, 1489.
12 J. W. Steed, Chem. Commun., 2011, 47, 1379.
and the antifungal agent chlorphenesin (3-(p-chlorophenoxy)-
propane-1,2-diol). The drug substances were dissolved in a hot
sol containing either gelator 1 in 1,2-dibromoethane or mixed
gelator 2ꢀ3 in 1,2,4-trichlorobenzene. Upon cooling gels formed
in a similar way to the gels obtained in the absence of the drug
solutes. Crystals were recovered manually and characterised by
X-ray crystallography. The solid forms isolated corresponded to
the known polymorphs obtained via non-gel methods in each
case with the exception of chlorphenesin, for which the X-ray
13 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133.
14 D. J. Abdallah and R. G. Weiss, Adv. Mater., 2000, 12, 1237.
15 N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821.
16 P. Sahoo, R. Sankolli, H.-Y. Lee, S. R. Raghavan and P. Dastidar,
Chem. – Eur. J., 2012, 18, 8057.
17 X. Cai, K. Liu, J. Yan, H. Zhang, X. Hou, Z. Liu and Y. Fang, Soft
Matter, 2012, 8, 3756.
18 J. A. Foster and J. W. Steed, Angew. Chem., Int. Ed., 2010, 49, 6718.
˘
¨
¨
19 F. Fages, F. Vogtle and M. Zinic, Top. Curr. Chem., 2005, 256, 77.
˘
20 M. Zinic, F. Vogtle and F. Fages, Top. Curr. Chem., 2005, 256, 39.
crystal structure is not reported in the CSD and was obtained 21 J. A. Foster, M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. A. K.
Howard and J. W. Steed, Nat. Chem., 2010, 2, 1037.
22 D. K. Kumar and J. W. Steed, Chem. Soc. Rev., 2014, 43, 2080.
from a sample produced in a gel of 2bꢀ3. We were subsequently
also able to obtain diffraction quality crystals of the same solid
´
23 F. Aparicio, E. Matesanz and L. Sanchez, Chem. Commun., 2012,
form of chlorphenesin via solution methods. Interestingly, the
structure exhibits Z0 = 2 and is based on an extensive network of
hydrogen bonded rings and chains. It thus fits with Brock’s
analysis that dialcohol structures should exhibit a tendency
towards Z0 4 1.50 Full structural details are given in the ESI.†
These preliminary crystal growth experiments establish the
feasibility of designing gels with controllable properties bearing
hydrophobic cavity-containing units and establish proof-of-
principle for their application as generally applicable pharma-
ceutical crystallization media for hydrophobic drugs.
Two new low-molecular-weight supramolecular gels containing
hydrophobic cavities have been prepared based on either a
unimolecular or two-component co-gel system. While these first
generation LMWG are not particularly versatile gelators they
establish proof-of-principle that calixarene based gelators may
be used to crystallise a variety of drug substances containing
hydrophobic residues. The formation of organic crystals within
a self-assembled gel medium represents weakly coupled ortho-
gonal self-assembly under non-equilibrium conditions.22,32,51,52
Further work aims to expand the range of solvent systems gelled
with a view to the discovery of novel polymorphic forms and inte-
gration of ‘off the shelf’ hydrophobic gelators within a polymorph
screening method.
48, 5757.
24 M. Pauchet, T. Morelli, S. Coste, J.-J. Malandain and G. Coquerel,
Cryst. Growth Des., 2006, 6, 1881.
25 Y. Diao, K. E. Whaley, M. E. Helgeson, M. A. Woldeyes, P. S. Doyle,
A. S. Myerson, T. A. Hatton and B. L. Trout, J. Am. Chem. Soc., 2012,
134, 673.
26 R. Hilfiker, Polymorphism: In the Pharmaceutical Industry, Wiley-VCH,
Weinheim, 2006.
27 J. Bernstein, Polymorphism in Molecular Crystals, Clarendon Press,
Oxford, 2002.
28 J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter and
J. Morris, Pharm. Res., 2001, 18, 859.
29 Polymorphism in Pharmaceutical Solids, ed. H. G. Brittain, Marcel
Dekker Inc., New York, 1999.
30 S. Byrn, R. Pfeiffer, M. Gany, C. Hoiberg and G. Poochikian, Pharm.
Res., 1995, 12, 945.
31 E. H. Lee, Asian J. Pharm. Sci., 2014, 9, 163.
32 A. Brizard, M. Stuart, K. van Bommel, A. Friggeri, M. de Jong and
J. van Esch, Angew. Chem., Int. Ed., 2008, 47, 2063.
33 C. Wischke and S. P. Schwendeman, Int. J. Pharm., 2008, 364, 298.
34 R. Joseph and C. P. Rao, Chem. Rev., 2011, 111, 4658.
35 C. D. Gutsche, Calixarenes Revisited, Royal Society of Chemistry,
Cambridge, 1998.
36 A. Ikeda and S. Shinkai, Chem. Rev., 1997, 97, 1713.
37 S. Eymur, E. Akceylan, O. Sahin, A. Uyanik and M. Yilmaz, Tetra-
hedron, 2014, 70, 4471.
38 A. Uyanik, M. Bayrakci, S. Eymur and M. Yilmaz, Tetrahedron, 2014,
70, 9307.
39 D. M. Rudkevich, W. Verboom and D. N. Reinhoudt, J. Org. Chem.,
1994, 59, 3683.
40 E. Quinlan, S. E. Matthews and T. Gunnlaugsson, Tetrahedron Lett.,
2006, 47, 9333.
L. K. is very grateful to the DFG (German Research Foundation)
for a research fellowship. We thank the Engineering and Physical
Sciences Research Council for funding (project EP/J013021/1).
41 X. Zhang, C.-H. Liu, L.-H. Liu, F.-Y. Wu, L. Guo, X.-Y. Sun, C.-J. Wang
and Y.-B. Jiang, Org. Biomol. Chem., 2003, 1, 728.
42 G. Yu, X. Yan, C. Han and F. Huang, Chem. Soc. Rev., 2013, 42, 6697.
43 C. Chassenieux and L. Bouteiller, in Supramolecular Chemistry
from Molecules to Nanomaterials, ed. P. A. Gale and J. W. Steed, John
Wiley & Sons, Chichester, 2012, vol. 2, p. 517.
44 R. Santra, K. Banerjee and K. Biradha, Chem. Commun., 2011,
47, 10740.
45 M. Durmaz, J. Inclusion Phenom. Macrocyclic Chem., 2012, 74, 361.
46 J. D. Badjic, V. Balzani, A. Credi, S. Silvi and J. F. Stoddart, Science,
2004, 303, 1845.
47 M. Lohse, K. Nowosinski, N. L. Traulsen, A. J. Achazi, L. K. S. von
Krbek, B. Paulus, C. A. Schalley and S. Hecht, Chem. Commun., 2015,
51, 9777.
Notes and references
1 L. Kaufmann and C. A. Schalley, Analytical Methods in Supra-
molecular Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2012,
ch. 1, p. 1, DOI: 10.1002/9783527644131.
2 A. R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith, Angew. Chem.,
Int. Ed., 2008, 47, 8002.
3 P. J. Flory, Faraday Discuss. Chem. Soc., 1974, 57, 7.
4 L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104, 1201.
5 T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem., Int. Ed., 2006,
45, 38.
48 W. Jiang and C. A. Schalley, Proc. Natl. Acad. Sci. U. S. A., 2009,
106, 10425.
49 R. M. Izatt, K. Pawlak, J. S. Bradshaw and R. L. Bruening, Chem. Rev.,
1991, 91, 1721.
6 Polymer Gels and Networks, ed. Y. Osada, A. R. Khokhlov and
O. Osada, Marcel Dekker Inc., New York, 2001.
7 K. Almdal, J. Dyre, S. Hvidt and O. Kramer, Polym. Gels Networks,
1993, 1, 5.
50 C. P. Brock and L. L. Duncan, Chem. Mater., 1994, 6, 1307.
51 A. Heeres, C. van der Pol, M. Stuart, A. Friggeri, B. L. Feringa and
J. van Esch, J. Am. Chem. Soc., 2003, 125, 14252.
52 M. Laupheimer, K. Jovic, F. E. Antunes, M. da Graca Martins Miguel
and C. Stubenrauch, Soft Matter, 2013, 9, 3661.
8 A. C. Balazs, Nature, 2013, 493, 172.
9 Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara and K. Matyjaszewski,
Angew. Chem., Int. Ed., 2011, 50, 1660.
10 D. Steinhilber, T. Rossow, S. Wedepohl, F. Paulus, S. Seiffert and
R. Haag, Angew. Chem., Int. Ed., 2013, 52, 13538.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016