Angewandte Chemie International Edition
10.1002/anie.201811561
COMMUNICATION
4
a). For both halogen bonded helices, four molecules (2+2)
[4]
a) R. Misra, S. Dey, R. M. Reja, H. N. Gopi, Angew. Chem. Int. Ed. 2018,
57, 1057–1061; b) Y. Tanaka, H. Katagiri, Y. Furusho, E. Yashima,
formed one turn and the molecules of 4 were arranged with each
other nearly perpendicularly. Thus, the helices also gave rise to a
large pitch of 20.1 Å (Figure 4a). Intramolecular NHO hydrogen
bonding rigidified the backbone and the two pyridine N atoms
pointed to the same direction. As a result, both helices existed as
a rectangular shape as observed from the two ends (Figure 4b).
Impressively two P helices and two M helices stacked alternately
through half of their molecules of 4, albeit in a dislocated manner,
which led to the generation of another supramolecular quadruple-
stranded helix (Figures 4b and 4c). Different from the reported
example of the artificial quadruple helix,[7] this two-component
supramolecular quadruple helix consisted of two pairs of helices
of opposite chirality. Formally the two single P and M helices also
existed as supramolecular double helices (P + P and M + M,
Figures 4d and 4e). However, different from the double helices
formed by 1-3 or other natural or artificial double helices.[7] These
double helices did not undergo any contact, even though they
overlapped with each other completely (Figure 4b). Instead, the
molecules of 4 in these double helices of the same chirality were
separated by the molecules of 4 of two other neighboring helices
Angew. Chem. Int. Ed. 2005, 44, 3867–3870; c) H. Ito, Y. Furusho, T.
Hasegawa, E. Yashima, J. Am. Chem. Soc. 2008, 130, 14008–14015; d)
S. A. Denisov, Q. Gan, X. Wang, L. Scarpantonio, Y. Ferrand, B.
Kauffmann, G. Jonusauskas, I. Huc, N. D. McClenaghan, Angew. Chem.
Int. Ed. 2016, 55, 1328–1333; e) L. Yang, W. Zhao, Y.-K. Che, Y. Wang,
H. Jiang, Chin. Chem. Lett. 2017, 28, 1659–1662.
[5]
a) H. Goto, Y. Furusho, K. Miwa, E. Yashima, J. Am. Chem. Soc. 2009,
131, 4710–4719; b) Y.-C. Zhang, L. Chen, H. Wang, Y.-M. Zhou, D.-W.
Zhang, Z.-T. Li, Chin. Chem. Lett. 2016, 27, 817–821.
[
[
[
6]
7]
8]
H. Yamada, Z.-Q. Wu, Y. Furusho, E. Yashima, J. Am. Chem. Soc.
2012, 134, 9506–9520.
Q. Gan, C. Bao, B. Kauffmann, A. Grelard, J. Xiang, S. Liu, I. Huc, H.
Jiang, Angew. Chem. Int. Ed. 2008, 47, 1715–1718.
R. Sinden, DNA Structure and Function 398 p, Academic Press,
Cambridge, Massachusetts, 2012.
[9]
a) L. Cheng, X. Lin, F. Wang, B. Liu, J. Zhou, J. Li, W. Li, Macromolecules
2013, 46, 8644–8648; b) Y. Furusho, E. Yashima, Macromol. Rapid
Commun. 2011, 32, 136–146; c) T. Maeda, Y. Furusho, S.-I. Sakurai, J.
Kumaki, K. Okoshi, E. Yashima, J. Am. Chem. Soc. 2008, 130, 7938–
7945; d) H. Sugiura, Y. Nigorikawa, Y. Saiki, K. Nakamura, M.
Yamaguchi, J. Am. Chem. Soc. 2004, 126, 14858–14864.
[
10] a) A. Farina, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati, G.
Vecchio, Angew. Chem. Int. Ed. 1999, 38, 2433–2436; b) C.-F. Ng, H.-F.
Chow, T. C. W. Mak, Angew. Chem. Int. Ed. 2018, 57, 4986–4990; c) J.
Lieffrig, A. G. Niassy, O. Jeannin, M. Fourmigué, CrystEngComm 2015,
17, 50–57.
of the opposite chirality. As
a result, the two pairs of
supramolecular double helices stacked interlacedly, leading to the
formation of unique supramolecular quadruple helical array in a
two-dimensional space.
[
[
11]
A. Casnati, R. Liantonio, P. Metrangolo, G. Resnati, R. Ungaro, F.
In conclusion, we have demonstrated that halogen bonding is
an efficient noncovalent force in controlling the growth of short
arylamide foldamers to supramolecular helical structures.
Depending on the structures of the monomeric foldamers,
supramolecular single helices are able to further aggregate to
produce of more complicated double helices or even quadruple
helix. The fact that both one-component and two-component
quadruple-stranded helices can be formed demonstrates the
robustness of halogen bonding in connecting molecular
monomers into supramolecular lines. Probably due to the
existence of multiple steric i-butyl groups, all the new
supramolecular helices exhibited large distortion and pitch. One
may speculate that by changing the size of the side chains, the
helical structures can be regulated considerably. Moreover, the
aromatic backbones can also allow for extensive modifications,
which may lead to the formation of well-defined cavity for the
investigation of new guest entrapment or transport.
Ugozzoli, Angew. Chem. Int. Ed. 2006, 45, 1915–1918.
12] C. J. Massena, N. B. Wageling, D. A. Decato, E. M. Rodriguez, A. M.
Rose, O. B. Berryman, Angew. Chem. Int. Ed. 2016, 55, 12398–12402.
13] M. T. Stone, J. S. Moore, J. Am. Chem. Soc. 2005, 127, 5928–5935.
14] a) Y. Huo, H. Zeng, Acc. Chem. Res. 2016, 49, 922–930; b) H. Zhao, S.
Sheng, Y. Hong, H. Zeng, J. Am. Chem. Soc. 2014, 136, 14270–14276.
[
[
[15] J. Cao, X. Yan, W. He, X. Li, Z. Li, Y. Mo, M. Liu, Y.-B. Jiang, J. Am.
Chem. Soc. 2017, 139, 6605–6610.
[
16]
a) F. Topic, K. Rissanen, J. Am. Chem. Soc. 2016, 138, 6610–6616; b)
A. R. Voth, P. Khuu, K. Oishi, P. S. Ho, Nat. Chem. 2009, 1, 74–79; c)
M. J. Langton, C. J. Serpell, P. D. Beer, Angew. Chem. Int. Ed. 2016, 55,
1
974–1987; d) L.-Y. You, S.-G. Chen, X. Zhao, Y. Liu, W.-X. Lan, Y.
Zhang, H.-J. Lu, C.-Y. Cao, Z.-T. Li, Angew. Chem. Int. Ed. 2012, 51,
657–1661; e) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi,
1
G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478–2601; f) E.
Corradi, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati, Angew.
Chem. Int. Ed. 2000, 39, 1782–1786.
[
[
17] a) B. Gong, Chem. Eur. J. 2001, 7, 4336–4342; b) I. Huc, Eur. J. Org.
Chem. 2004, 17–29; c) Q. Gan, Y. Wang, H. Jiang, Curr. Org. Chem.
2011, 15, 1293–1301; d) D.-W. Zhang, X. Zhao, J.-L. Hou, Z.-T. Li, Chem.
Rev. 2012, 112, 5271–5316; e) H. Fu, Y. Liu, H. Zeng, Chem. Commun.
2013, 49, 4127–4144.
Acknowledgements
18] a) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew.
Chem. Int. Ed. 2008, 47, 6114–6127; b) L. C. Gilday, S. W. Robinson, T.
A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer, Chem. Rev. 2015,
We are grateful to the National Natural Science Foundation of
China for financial support of this work (No. 21772026 and
115, 7118–7195; c) P. Politzer, J. S. Murray, T. Clark, Phys. Chem.
21432004).
Chem. Phys. 2013, 15, 11178–11189; d) H. Wang, W. Wang, W. J. Jin,
Chem. Rev. 2016, 116, 5072–5104; e) R. Tepper, U. S. Schubert, Angew.
Chem. Int. Ed. 2018, 57, 6004–6016; f) M. Erdelyi, Chem. Soc. Rev.
Keywords: helical structures • halogen bonding • hydrogen
bonding • self-assembly • foldamer
2012, 41, 3547–3557; g) A. V. Jentzsch, Pure Appl. Chem. 2015, 87, 15–
41; h) T. M. Beale, M. G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem.
Soc. Rev. 2013, 42, 1667–1680.
[
[
1]
2]
J. D. Watson, F. C. H. Crick, Nature 1953, 171, 737–738.
[
[
19] H. Jiang, J.-M. Léger, I. Huc, J. Am. Chem. Soc. 2003, 125, 3448–3449.
20] J. Zhu, R. D. Parra, H. Zeng, E. Skrzypczak-Jankun, X. C. Zeng, B. Gong,
J. Am. Chem. Soc. 2000, 122, 4219–4220.
a) M. Albrecht, Angew. Chem. Int. Ed. 2005, 44, 6448–6451; b) Y.
Furusho, E. Yashima, J. Polym. Sci. A 2009, 47, 5195–5207.
a) M. Boiocchi, L. Fabbrizzi, Chem. Soc. Rev. 2014, 43, 1835–1847; b)
M. lbrecht, Chem. Rev. 2001, 101, 3457–3497; c) Y. Takezawa, M.
Shionoya, Acc. Chem. Res. 2012, 45, 2066–2076.
[
3]
4
This article is protected by copyright. All rights reserved.