10.1002/chem.201900822
Chemistry - A European Journal
COMMUNICATION
2018, 20, 4204–4208; b) S. T. Keaveney, F. Schoenebeck, Angew.
Chem. 2018, 130, 4137–4141; Angew. Chem. Int. Ed. 2018, 57, 4073–
4077; c) Okuda, J. Xu, T. Ishida, C. Wang, Y. Nishihara, ACS Omega
2018, 3, 13129–13140; d) Z. Wang, X. Wang, Y. Nishihara, Chem.
Commun. 2018, 54, 13969–13972; e) S. Sakurai, T. Yoshida, M. Tobisu,
Chem. Lett. 2019, 48, 94–97. See also ref 4b.
In addition to an electronically non-biased acid fluoride (1b),
electron-rich and -poor acid fluorides 1c–1e participated in the
hydroacylation of vinylarenes 2a or 2g at 25–60 °C (Table 2,
entries 8–13).[24] In some cases, the use of SciOPP instead of
DPPBz on Cu increased the yields. Notably, the C(sp2)–Cl bond
on the benzene ring, which can undergo oxidative addition to Ni(0)
species, was tolerated.[25] N-Methyl-2-indolyl carbonyl fluoride
reacted with 2g at 80 °C, giving 3o in 47% yield (entry 14). Neither
aliphatic acid fluorides nor aliphatic alkenes provided the
hydroacylation products 3.
[6]
For selected examples using Cu catalysts, see: a) J. S. Bandar, E. Ascic,
S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 5821–5824; b) Y. Zhou,
J. S. Bandar, S. L. Buchwald, J. Am. Chem. Soc. 2017, 139, 8126–8129;
c) Y. Huang, K. B. Smith, M. K. Brown, Angew. Chem. 2017, 129, 13499–
13503; Angew. Chem. Int. Ed. 2017, 56, 13314–13318; d) T. Fujihara, A.
Sawada, T. Yamaguchi, Y. Tani, J. Terao, Y. Tsuji, Angew. Chem. 2017,
129, 1561–1565; Angew. Chem. Int. Ed. 2017, 56, 1539–1543.
For selected papers on metal-catalyzed reductive coupling, see: a) K.
Kokubo, M. Miura, M. Nomura, Organometallics 1995, 14, 4521–4524;
b) Y.-T. Hong, A. Barchuk, M. J. Krische, Angew. Chem. 2006, 118,
7039–7042; Angew. Chem. Int. Ed. 2006, 45, 6885–6888; c) H. Xiao, G.
Wang, M. J. Krische, Angew. Chem. 2016, 128, 16353–16356; Angew.
Chem. Int. Ed. 2016, 55, 16119–16122. See also ref 6a.
Finally, the synergistic Ni/Cu two-metal catalyst was applied
to the derivatization of a complex molecule. Vinylestrone 2i
underwent hydroacylation with 1a and HSiMe(OMe)2 at 25 °C,
affording 3p as a 1:1 diastereomeric mixture in 48% yield without
reduction of the cyclopentanone moiety.[26]
[7]
[8]
[9]
For selected reviews on metal-catalyzed reductive coupling, see: a) K. D.
Nguyen, B. Y. Park, T. Luong, H. Sato, V. J. Garza, M. J. Krische,
Science 2016, 354, aah5133; b) M. Holmes, L. A. Schwartz, M. J. Krische,
Chem. Rev. 2018, 118, 6026–6052.
Scheme 2. Reaction of 1a and 2i
O
O
Me
Me
H
[Ni(cod)2]/DCYPBz (5 mol%)
CuF2/DPPBz (10 mol%)
H
H
+
1a
O
H
H
H
A. Boreux, K. Indukuri, F. Gagosz, O. Riant, ACS Catal. 2017, 7, 8200–
8204.
HSiMe(OMe)2 (2 eq)
THF (0.5 M), 25 °C, 20 h
Ph
2i (2.5 eq)
3p 48%
Me
[10] For our work on synergistic cooperative enantioselective Rh/Pd two-
metal catalysis, see: M. Sawamura, M. Sudoh, Y. Ito, J. Am. Chem. Soc.
1996, 118, 3309–3310.
In summary, the hydroacylation of vinylarenes with acyl
fluorides and hydrosilanes by synergistic Ni/Cu two-metal
catalysis was developed. The use of DCYPBz as a ligand with its
electron-donating, sterically demanding, and rigid properties was
effective for producing the catalytically active Ni species. The
stability of the acyl fluorides and the mildness of the reaction
conditions are attractive features of this alkene hydroacylation
protocol. Further studies on synergistic two-metal catalysis for
efficient C–F transformations are ongoing in our laboratory.
[11] For a review on synergistic catalysis, see: A. E. Allen, D. W. C. MacMillan,
Chem. Sci. 2012, 3, 633–658.
[12] For selected reviews on cooperative two-metal catalysis, see: a) J. M.
Lee, Y. Na, H. Han, S. Chang, Chem. Soc. Rev. 2004, 33, 302–312; b)
D. R. Pye, N. P. Mankad, Chem. Sci. 2017, 8, 1705–1718; c) K. Semba,
Y. Nakao, Tetrahedron 2019, 75, 709–719.
[13] For selected papers on cooperative two-metal catalysis in cross-coupling,
see: for Pd/Cu catalysis, a) K. Sonogashira, Y. Tohda, N. Hagihara,
Tetrahedron Lett. 1975, 16, 4467–4470; b) F. Nahra, Y. Macé, D. Lambin,
O. Riant, Angew. Chem. 2013, 125, 3290–3294; Angew. Chem. Int. Ed.
2013, 52, 3208–3212; c) K. Semba, Y. Nakao, J. Am. Chem. Soc. 2014,
136, 7567–7570; d) K. B. Smith, K. M. Logan, W. You, M. K. Brown,
Chem. Eur. J. 2014, 20, 12032–12036; e) K. M. Logan, K. B. Smith, M.
K. Brown, Angew. Chem. 2015, 127, 5317–5320; Angew. Chem. Int. Ed.
2015, 54, 5228–5231; f) T. Jia, P. Cao, B. Wang, Y. Lou, X. Yin, M. Wang,
J. Liao, J. Am. Chem. Soc. 2015, 137, 13760–13763; g) K. Semba, K.
Ariyama, H. Zheng, R. Kameyama, S. Sakaki, Y. Nakao, Angew. Chem.
2016, 128, 6383–6387; Angew. Chem. Int. Ed. 2016, 55, 6275–6279; h)
S. D. Friis, M. T. Pirnot, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138,
8372–8375; i) S. D. Friis, M. T. Pirnot, L. N. Dupuis, S. L. Buchwald,
Angew. Chem. 2017, 129, 7348–7352; Angew. Chem. Int. Ed. 2017, 56,
7242–7246; for Ni/Cu catalysis, j) I. P. Beletskaya, G. V. Latyshev, A. V.
Tsvetkov, N. V. Lukashev, Tetrahedron Lett. 2003, 44, 5011–5013; k) O.
Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am. Chem. Soc. 2009, 131,
12078–12079; l) O. Vechorkin, V. Proust, X. Hu, Angew. Chem. 2010,
122, 3125–3128; Angew. Chem. Int. Ed. 2010, 49, 3061–3064; m) J. Yi,
X. Lu, Y.-Y. Sun, B. Xiao, L. Liu, Angew. Chem. 2013, 125, 12635–
12639; Angew. Chem. Int. Ed. 2013, 52, 12409–12413; n) Y. Wang, S.-
B. Wu, W.-J. Shi, Z.-J. Shi, Org. Lett. 2016, 18, 2548–2551; o) K. Semba,
Y. Ohtagaki, Y. Nakao, Org. Lett. 2016, 18, 3956–3959; for Ni/Pd
catalysis, p) L. K. G. Ackerman, M. M. Lovell, D. J. Weix, Nature 2015,
524, 454–457; for Ni/Co catalysis, q) S. A. Green, J. L. Matos, A. Yagi,
R. A. Shenvi, J. Am. Chem. Soc. 2016, 138, 12779–12782.
Acknowledgements
This work was supported by JSPS KAKENHI Grant Number JP
17H04877 in Young Scientists (A) to T.I., and by JSPS KAKENHI
Grant Number JP15H05801 in Precisely Designed Catalysts with
Customized Scaffolding to M.S.
Keywords: nickel • copper • cooperative catalysis • acyl fluorides
• hydroacylation
[1]
For selected papers, see: a) G. A. Olah, S. J. Kuhn, J. Org. Chem. 1961,
26, 225–227; b) L. A. Carpino, D. Sadat-Aalaee, H. G. Chao, R. J.
DeSelms, J. Am. Chem. Soc. 1990, 112, 9652–9654; c) T. Scattolin, K.
Deckers, F. Schoenebeck, Org. Lett. 2017, 19, 5740–5743.
Y. Zhang, T. Rovis, J. Am. Chem. Soc. 2004, 126, 15964–15965.
a) Y. Ogiwara, Y. Maegawa, D. Sakino, N. Sakai, Chem. Lett. 2016, 45,
790–792; b) Y. Ogiwara, D. Sakino, Y. Sakurai, N. Sakai, Eur. J. Org.
Chem. 2017, 2017, 4324–4327.
[2]
[3]
[4]
[5]
a) D. R. Fahey, J. E. Mahan, J. Am. Chem. Soc. 1977, 99, 2501–2508.
For isolation of the oxidative addition product [Ni(PhCO)F(PEt3)2], see:
b) C. A. Malapit, J. R. Bour, C. E. Brigham, M. S. Sanford, Nature 2018,
563, 100–104.
[14] For selected reviews on hydroacylation, see: a) M. C. Willis, Chem. Rev.
2010, 110, 725–748; b) J. C. Leung, M. J. Krische, Chem. Sci. 2012, 3,
2202–2209; c) R. Guo, G. Zhang, Synlett 2018, 29, 1801–1806.
[15] Hydroacylation of allenes with acyl chlorides and hydrosilanes as
acylating and hydride sources, respectively, in the presence of Pd
For decarbonylative transformations of acyl fluorides with transition metal
catalysts, see: Y. Ogiwara, Y. Sakurai, H. Hattori, N. Sakai, Org. Lett.
This article is protected by copyright. All rights reserved.