inorganic–organic chain assemblies via NaOH treatment.
2
The morphologies of the Cu(OH) and CuO nanostructures
obtained from Cu-lau and Cu-DS were almost identical, that
is, independent of the nanoreactor, but the aspect ratios of the
nanostructures depended on the hydrophobic strength of the
inorganic–organic chain assembly precursors.
In this work, we demonstrated that inorganic–organic chain
assemblies acted as lamellar nanoreactors for the formation of
1
-D nanostructures. This synthetic strategy using lamellar
nanoreactors provides a general method for tuning the shape
and aspect ratio of 1-D nanostructures by controlling the alkyl
chain length and the binding affinity of the hydrophilic groups.
This work was supported by the National Research
Foundation of Korea (KRF-2011-0005120).
Scheme 1 Schematic diagram of the synthetic strategy for preparing
-D nanostructured materials using a lamellar nanoreactor, which acts
1
as both a metal ion supplier and a structural template. The selective
À
penetration of OH ions into the hydrophilic sheets yielded the
2
Cu(OH) and CuO nanostructures.
An important feature of the Cu(OH)
2
or CuO products is that
Notes and references
the nanowires were uniformly aligned in a particular orientation
as bundles, irrespective of lamellar nanoreactors. The uniform
1
A. P. Alivisatos, Science, 1996, 271, 933.
2 (a) T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano,
P. C. Gibbons and W. E. Buhro, Science, 1995, 270, 1791;
nanowire-like morphologies of Cu(OH) could be understood
2
(
b) Y. G. Sun and Y. N. Xia, Adv. Mater., 2002, 14, 833.
(a) D. Chen and M. Jiang, Acc. Chem. Res., 2005, 38, 494;
b) T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev.,
by considering the role of the lamellar nanoreactor, consisting
hydrophilic metal region and hydrophobic alkyl-chain regions
alternately (Fig. 1). The synthetic strategies are represented in
3
(
2005, 105, 1401; (c) T. Dwars, E. Paetzold and G. Oehme, Angew.
Chem., Int. Ed., 2005, 44, 7174; (d) S. L. Qi, Coord. Chem. Rev.,
2010, 254, 1054; (e) K. T. Kim, S. A. Meeuwissen, R. J. M. Nolte
and J. C. M. van Hest, Nanoscale, 2010, 2, 844.
À
Scheme 1. Upon NaOH treatment, OH selectively penetrated
the hydrophilic sheets of the amphiphilic bilayers and simply
reacted with Cu(II) ions arranged in an orderly fashion within
4 (a) X. W. Lou and Z. C. Yang, Adv. Mater., 2008, 20, 3987;
(b) J. R. Huang and D. B. Su, Chem.–Eur. J., 2006, 12, 3805.
5
the sheets to yield the directional growth of the Cu(OH)
nanowires. Formation of the Cu(OH) products disrupted the
2
(a) S. Kratohvil and E. Matijevic
b) R. Rodrıguez-Clemente, C. J. Serma, M. Ocan
E. Matijevic, J. Cryst. Growth, 1994, 143, 277.
´
, J. Mater. Res., 1991, 6, 766;
2
(
´
˜
a
and
interactions between the Cu(II) ions and the headgroups in
amphiphiles, which led to electrostatic repulsion between
´
6 (a) X. Wen, Y. Xie, C. L. Choi, K. C. Wan, X.-Y. Li and S. Yang,
Langmuir, 2005, 21, 4729; (b) Z. L. Wang, X. Y. Kong, X. Wen and
S. Yang, J. Phys. Chem. B, 2003, 107, 8725.
surfactants to produce bundle Cu(OH) nanowires due to hydrogen
2
bonding interactions between the Cu(OH) nanowires. At higher
2
7
(a) C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu and J. Ma, J. Phys.
Chem. B, 2004, 108, 17825; (b) G. H. Du and G. van Tendeloo,
Chem. Phys. Lett., 2004, 393, 64; (c) D. P. Singh, A. K. Ojha and
O. N. Srivastava, J. Phys. Chem. C, 2009, 113, 3409.
(a) X. Wen, W. Zhang, S. Yang, Z. R. Dai and Z. L. Wang, Nano
Lett., 2002, 2, 1397; (b) X. Wen, W. Zhang and S. Yang, Langmuir,
2003, 19, 5898.
reaction temperatures, CuO nanorods with small aspect ratios were
obtained, ascribed to the reduced template effect and dehydration
1
7
2
of Cu(OH) . As the reaction temperature was increased, lamellar
8
structures became unstable due to breaking of the interchain
interactions, including the hydrogen-bonding and hydrophobic
À
interactions. The bridging OH ligands penetrated the copper ions
in the hydrophilic sheets, yielding intermediate Cu(OH) nanowires
9 (a) S.-H. Park and H. J. Kim, J. Am. Chem. Soc., 2004, 126, 14368;
b) S. C. Lee, S.-H. Park, S. M. Lee, J. B. Lee and H. J. Kim, Catal.
(
2
Today, 2007, 120, 358; (c) W. Jia, E. Reitz, H. Sun, B. Li, H. Zhang
and Y. Lei, J. Appl. Phys., 2009, 105, 064917; (d) W. Jia, E. Reitz,
H. Sun, B. Li, H. Zhang and Y. Lei, Mater. Lett., 2009, 63, 519.
0 (a) J. C. Marchon, P. Maldivi, A. M. Giroud-Godquin,
D. Guillon, A. Skoulios and D. P. Strommen, Philos. Trans. R.
Soc. London, Ser. A, 1990, 330, 109; (b) G. K. H. Shimizu,
R. Vaidhyanathan and J. M. Taylor, Chem. Soc. Rev., 2009,
38, 1430; (c) S.-H. Park and C. E. Lee, Chem.Commun., 2003,
that did not grow completely. By controlled experiments without
template, the template effects via confined crystallization of a
lamellar nanoreactor are confirmed in Fig. S2, ESI.w
1
1
It is worth noting that the shapes and aspect ratios of the
2
Cu(OH) or CuO nanostructures were varied by choosing
Cu-lau or Cu-DS as nanoreactors. Although the alkyl chains
were similar in size, the interlayer d-spacings of the chain
assemblies of Cu-lau and Cu-DS were different, 3.20 nm and
1
838; (d) S.-H. Park and C. E. Lee, Chem. Mater., 2006, 18, 981.
1 (a) H. Abied, D. Guillon, A. Skoulios, P. Weber, A. M. Giroud-
Godquin and J. C. Marchon, Liq. Cryst., 1987, 2, 269; (b) M. Ibn-
Elhaj, D. Guillon, A. Skoulios, A. M. Giroud-Godquin and
P. Maldivi, Liq. Cryst., 1992, 11, 731; (c) J. A. R. Cheda,
M. V. Garcia, A. I. Redondo, S. Gargani and P. Ferloni, Liq.
Cryst., 2004, 31, 1.
2
.48 nm, respectively. The differences in the d-spacings and the
organic chain structures could be understood by considering
the packing of the Cu(II) coordination sphere as shown in
Fig. 1. The binding affinity of the lamellar nanoreactor at
inorganic–organic interfaces thereby increased with the tight
packing of the Cu(II) coordination and the highly aligned alkyl
1
2 C. S. Bruschini, M. G. B. Drew, M. J. Hudson and K. Lyssenko,
Polyhedron, 1995, 14, 3099.
1
3 (a) R. C. Herron and R. C. Pink, J. Chem. Soc., 1956, 3948;
(b) A. M. Godquin-Giroud, J. C. Marchon, D. Guillon and
A. Skoulios, J. Phys., Lett., 1984, 45, L681.
À
chains normal to the basal plane. Penetration of the OH ions
into the lamellar nanoreactors, which could be controlled via
the hydrophobicity, played an important role in the selectivity
of the lamellar nanoreactors.
14 J. R. Gunter and H. R. Ostwald, J. Appl. Crystallogr., 1970, 3, 21.
˚
1
5 S. Asbrink and L. J. Norrby, Acta Crystallogr., Sect. B: Struct.
Crystallogr. Cryst. Chem., 1970, 26, 8.
1
6 N. B. Colthup, Introduction to Infrared and Raman Spectroscopy,
Academic Press, New York, 3rd edn, 1990.
17 Y. Cudennec and A. Lecerf, Solid State Sci., 2003, 5, 1471.
In summary, we successfully fabricated uniform, 1-D
Cu(OH)
2
and CuO nanostructures from self-assembled
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11763–11765 11765