Organometallics
Article
̈
(17) Gansauer, A.; Bluhm, H.; Pierobon, M. Emergence of a Novel
Catalytic Radical Reaction: Titanocene-Catalyzed Reductive Opening
of Epoxides. J. Am. Chem. Soc. 1998, 120, 12849−12859.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the SFB 813 (“Chemistry at Spin
Centers”) and Ga-619/12-1 for support to A.G. and the U.S.
National Institutes of Health (R01 GM108762) and NSF
(CHE-1362095) for support to T.V.R. S.H. and S.K. thank the
̈
Jurgen Manchot Stiftung for doctoral fellowships. J.G. and
K.R.D. acknowledge financial assistance by The Ohio State
(18) Chakraborty, T. K.; Dutta, S. Radical-Induced Opening of
Trisubstituted Epoxides: Application in the Synthesis of the C1-C12
Segment of Epothilones. Tetrahedron Lett. 1998, 39, 101−104.
́
(19) Fernandez-Mateos, A.; de la Nava, E. M. n.; Coca, G. P.; Silvo,
́
A. R.; Gonzalez, R. R. Radicals from Epoxides: Intramolecular
Addition to Aldehyde and Ketone Carbonyls. Org. Lett. 1999, 1, 607−
University.
609.
(20) Nakai, K.; Kamoshita, M.; Doi, T.; Yamada, H.; Takahashi, T.
Stereo- and regio-selective Ti-mediated radical cyclization of epoxy-
alkenes: synthesis of the A and C ring synthons of paclitaxel.
Tetrahedron Lett. 2001, 42, 7855−7857.
(21) Bermejo, F.; Sandoval, C. Cp2TiCl-Promoted Isomerization of
Trisubstituted Epoxides to exo-Methylene Allylic Alcohols on
Carvone Derivatives. J. Org. Chem. 2004, 69, 5275−5280.
(22) Justicia, J.; Jimenez, T.; Morcillo, S. P.; Cuerva, J. M.; Enrique
Oltra, J. Mixed disproportionation versus radical trapping in
titanocene(III)-promoted epoxide openings. Tetrahedron 2009, 65,
10837−10841.
(23) (a) Morales, C. P.; Catalan, J.; Domingo, V.; Gonzalez
Delgado, J. A.; Dobado, J. A.; Mar Herrador, M.; Quilez del Moral, J.
F.; Barrero, A. F. Protecting-Group-Free Synthesis of Chokols. J. Org.
Chem. 2011, 76, 2494−2501. (b) When 2 equiv of triethylamine was
replaced with 2 equiv of 2,4,6-collidine, the yield of β-scission product
in this study was diminished from 66% to 22% and the yield of
hydrogen abstraction product increased from <15% to 45%. This is
consistent with collidine acting as a hydrogen transfer reagent..
(24) Barrero, A. F.; Cuerva, J. M.; Herrador, M. M.; Valdivia, M. V.
A New Strategy for the Synthesis of Cyclic Terpenoids Based on the
Radical Opening of Acyclic Epoxypolyenes. J. Org. Chem. 2001, 66,
4074−4078.
(25) Barrero, A. F.; Oltra, J. E.; Cuerva, J. M.; Rosales, A. Effects of
Solvent and Water in Ti(III)-Mediated Radical Cyclizations of
Epoxygermacrolides. Straightforward Synthesis and Absolute Stereo-
chemistry of (+)-3α-Hydroxyreynosin and Related Eudesmanolides. J.
Org. Chem. 2002, 67, 2566−2571.
REFERENCES
■
(1) Sakai, S. Theoretical study on the reaction mechanisms of
ethylene with Cp2Ti+R, Cp2Ti(Cl)R, and Cp2Ti(Cl:AlH2Cl)R (R = H
and CH3). J. Mol. Struct.: THEOCHEM 2001, 540, 157−169.
(2) Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima,
M.; Sugimori, J. Asymmetric Diels-Alder Reaction Catalyzed by a
Chiral Titanium Reagent. J. Am. Chem. Soc. 1989, 111, 5340−5345.
(3) Fuse, S.; Hanochi, M.; Doi, T.; Takahashi, T. Ti(III) radical
cyclization of 6,7-epoxygeranyl acetate. Tetrahedron Lett. 2004, 45,
1961−1963.
(4) Justicia, J.; Rosales, A.; Bunuel, E.; Oller-Lopez, J. L.; Valdivia,
N.; Haidour, A.; Oltra, J. E.; Barrero, A. F.; Cardenas, D. J.; Cuerva, J.
M. Titanocene-Catalyzed Cascade Cyclization of Epoxypolyprenes:
Straightforward Synthesis of Terpenoids by Free-Radical Chemistry.
Chem. - Eur. J. 2004, 10, 1778−1788.
(5) Justicia, J.; Oller-Lopez, J. L.; Campana, A. G.; Oltra, J. E.;
Cuerva, J. M.; Bunuel, E.; Cardenas, D. J. 7-endo Radical Cyclization
Catalyzed by Titanocene(III). Straightforward Synthesis of Terpe-
noids with Seven-Membered Carbocycles. J. Am. Chem. Soc. 2005,
127, 14911−14921.
(6) Birmingham, J. M.; Fischer, A. K.; Wilkinson, G. The reduction
of bis-cyclopentadienyl compounds. Naturwissenschaften 1955, 42,
96−96.
(7) Green, M. L. H.; Lucas, C. R. Some d1 Bis-π-cyclopentadienyl
Titanium Complexes with Nitrogen or Phosphorus Ligands. J. Chem.
Soc., Dalton Trans. 1972, 1972, 1000−1003.
(8) Schwartz, J.; Labinger, J. A. Hydrozirconation: A New Transition
Metal Reagent for Organic Synthesis. Angew. Chem., Int. Ed. Engl.
1976, 15, 333−340.
(9) Wipf, P.; Jahn, H. Synthetic applications of of organo-
chlorozirconocene complexes. Tetrahedron 1996, 52, 12853−12910.
(10) Luinstra, G. A.; Teuben, J. H. Lead Dichloride: a Mild Reagent
for the Oxidation of Tervalent Titanium Compounds (η5-
C5Me5]2TiR to Monochloride derivatives (η5-C5Me5)2R(Cl). J.
Chem. Soc., Chem. Commun. 1990, 1470−1471.
(11) de Wolf, J. M.; Meetsma, A.; Teuben, J. H. Synthesis and
Structure of Bis(phenyltetramethylcyclopentadienyl)titanium(III)
Hydride: The First Monomeric Bis(cyclopentadienyl)titanium(III)
Hydride. Organometallics 1995, 14, 5466−5468.
(12) Rosales, A.; Rodríguez-García, I.; Mun
Molina, E.; Padial, N. M.; Morales, L. P.; García-Ocan
E. The Nugent-RajanBabu Reagent: A Formidable Tool in
Contemporary Radical and Organometallic Chemistry. Eur. J. Org.
Chem. 2015, 2015, 4567−4591.
(13) Barrero, A. F.; del Moral, J. F. Q.; Sanchez, E. M.; Arteaga, J. F.
Titanocene-Mediated Radical Cyclization: An Emergent Method for
the Synthesis of Natural Products. Eur. J. Org. Chem. 2006, 1627−
1641.
(26) Barrero, A. F.; Rosales, A.; Cuerva, J. M.; Oltra, J. E. Unified
Synthesis of Eudesmanolides, Combining Biomimetic Strategies with
Homogeneous Catalysis and Free-Radical Chemistry. Org. Lett. 2003,
5, 1935−1938.
(27) Justicia, J.; Alvarez de Cienfuegos, L.; Estevez, R. E.; Paradas,
M.; Lasanta, A. M.; Oller, J. L.; Rosales, A.; Cuerva, J. M.; Enrique
Oltra, J. Ti-catalyzed transannular cyclization of epoxygermacrolides.
Synthesis of antifungal (+)-tuberiferine and (+)-dehydrobrachyaeno-
lide. Tetrahedron 2008, 64, 11938−11943.
(28) Filatov, E. S.; Simanov, E. F.; Orlova, M. A. Reactivity of
Hydrogen Atoms. Usp. Khimii. 1981, 50, 2167−2187.
̈
(29) Gansauer, A.; Behlendorf, M.; von Laufenberg, D.; Fleckhaus,
́
̃
oz-Bascon, J.; Roldan-
a, M.; Oltra, J.
A.; Kube, C.; Sadasivam, D. V.; Flowers, R. A. II. Catalytic Atom-
Economical Radical Arylation of Epoxides. Angew. Chem., Int. Ed.
2012, 51, 4739−4742.
̃
̈
(30) Gansauer, A.; Kube, C.; Daasbjerg, K.; Sure, R.; Grimme, S.;
Fianu, G. D.; Sadasivam, D. V.; Flowers, R. A. II. Substituent Effects
and Supramolecular Interactions of Titanocene(III) Chloride:
Implications for Catalysis in Single Electron Steps. J. Am. Chem.
Soc. 2014, 136, 1663−1671.
(31) It cannot be completely ruled out that radical 7 could be
trapped by Cp2TiCl, affording a 3° alkyltitanium species which then
undergoes protonolysis to afford saturated alcohols 13. We believe
this is unlikely for reasons discussed in detail in the pp S13−S14 in
the Supporting Information. Moreover, the results in Table 4 would
require that this be a minor pathway. Nevertheless, it can be noted
that Cp2Ti(R)Cl, R = 3° alkyl, can be prepared for bridgehead alkyl
derivative where β-hydride elimination would result in formation of
an anti-Bredt alkene: Dimitrov, V. Preparation and Properties of
Cyclopentadienyltitanium(IV)-1-Norbornyl Compounds. J. Organo-
met. Chem. 1985, 282, 321−329.
(14) Cuerva, J. M.; Justicia, J.; Oller-Lopez, J. L.; Bazdi, B.; Oltra, J.
E. The Growing Impact of Titanocene(III)-Mediated Radical Epoxide
Opening on the Synthesis of Natural Products. Mini-Rev. Org. Chem.
2006, 3, 23−35.
(15) RajanBabu, T. V.; Nugent, W. A. Selective Generation of Free
Radicals from Epoxides Using a Transition-Metal Radical: A Powerful
New Tool for Organic Synthesis. J. Am. Chem. Soc. 1994, 116, 986−
997.
̈
(16) Gansauer, A. Titanocenes as Electron Transfer Catalysts:
Reagent Controlled Catalytic Radical Reactions. Synlett 1998, 1998,
801−809.
H
Organometallics XXXX, XXX, XXX−XXX