I. Ceki ´c -Laskovi ´c et al. / Electrochimica Acta 56 (2011) 5257–5265
5265
bond) and the enol (low bond orders for the C–O bonds and the
Acknowledgements
intermediate (∼1.5) bond order for the ring 12–13 bond) forms.
The keto form is present mostly in acidic and neutral conditions,
whereas the enol form is favored under basic conditions.
The financial support by the Ministry of Science of the Republic
of Serbia, grant no. 172020 (to R.M.) is acknowledged.
In our experimental conditions, in DMSO, in the presence of
TBOH or electrochemically generated negative species, like anion
radicals or dianions (such as electrogenerated bases), the enolate
anions and the dianions are favored. The similarity of the absorp-
tion spectra recorded in the electrochemical reduction to those
in the presence of TBOH is experimental evidence in this respect.
Consequently, all of these intermediates were calculated, and the
References
[
[
[
[
1] R.G. Giles, N.J. Lewis, J.K. Quick, M.J. Sasse, M.W.J. Urquhart, Tetrahedron 56
(
2000) 4531.
2] Z. D zˇ ambaski, M. Stojanovi c´ , M. Baranac-Stojanovi c´ , D.M. Mini c´ , R. Markovi c´ , J.
Serb. Chem. Soc., doi:10.2298/JSC100607038D.
3] R. Markovi c´ , M. Baranac, N. Jurani c´ , S. Macura, I. Ceki c´ , D. Mini c´ , J. Mol. Struct.
800 (2006) 85.
4] R. Markovi c´ , A. Shirazi, M. Baranac, Z. D zˇ ambaski, D. Mini c´ , J. Phys. Org. Chem.
−
+
energetics of the global reaction, 2a,b + 2e + 2H = 1b, was eval-
uated for both the enol and the keto forms of 1b. The results
indicate that the global reduction of 2a,b to the 1b–enol is slightly
17 (2004) 118.
[5] P.J. Taylor, Spectrochim. Acta 26A (1970) 153.
[6] S. Rajappa, Tetrahedron 55 (1999) 7065.
−1
endothermic (52.72 and 33.14 kJ mol
for 2a and 2b, respec-
[
7] R. Markovi c´ , Z. D zˇ ambaski, M. Baranac, Tetrahedron 57 (2001) 5833.
[
8] R. Markovi c´ , M. Baranac, Z. D zˇ ambaski, M. Stojanovi c´ , P.J. Steel, Tetrahedron 59
(2003) 7803.
tively), whereas the 1b–keto form is largely exothermic (−88.58
−1
and −108.28 kJ mol for 2a and 2b, respectively). Therefore, the
acid–base properties of these species play an important role in the
overall electrochemical reduction of 2 to 1 and must be considered
for the complete understanding of the reaction mechanism.
[
9] R. Markovi c´ , M. Baranac, M. Stojanovi c´ , Synlett 6 (2004) 1034.
[
10] I. Ceki c´ -Laskovi c´ , D.M. Mini c´ , R. Markovi c´ , E. Volanschi, J. Electroanal. Chem.
51 (2011) 50.
[11] M. Enache, I. Anghelache, E. Volanschi, International J. Pharm. 390 (2010) 100.
6
[
[
[
12] L. Preda, E. Volanschi, Cent. Eur. J. Chem. 7 (3) (2009) 486.
14] J.F. Bergamini, J. Delaunay, P. Hapiot, M. Hillebrand, C. Lagrost, J. Simonet, E.
Volanschi, J. Electroanal. Chem. 569 (2004) 175.
4
. CONCLUSIONS
[
[
[
15] R. Markovi c´ , M. Baranac, Z. D zˇ ambaski, Heterocycles 63 (2004) 851.
16] M. Ciureanu, M. Hillebrand, E. Volanschi, J. Electroanal. Chem. 291 (1990) 201.
17] M. Ciureanu, M. Hillebrand, E. Volanschi, J. Electroanal. Chem. 322 (1992) 221.
The electrochemical reduction of (5–ethoxycarbonyleth-
ylidene–4–oxothiazolidin–2–ylidene)–N–phenylethanamide (2)
to (Z)–(5–ethoxycarbonylmethyl–4–oxothiazolidin–2–ylidene)–
N–phenylethanamide (1) in DMSO in the presence of protic impu-
rities was investigated by coupled in situ electrochemical (CV with
stationary and RDE) and spectral (EPR, UV–vis absorption) tech-
niques. A reduction mechanism, which consisted of an ECE–Disp
sequence that was followed by the protonation of the strong
EGB, was proposed. The same intermediate species, the dianion
[
[
19] A. Klamt, G. Schurmann, J. Chem. Soc, Perkin Trans. 2 (1993) 799.
20] I. Ceki c´ -Laskovi c´ , D. Mini c´ , M. Baranac-Stojanovi c´ , R. Markovi c´ , E. Volanschi,
Russ. J. Phys. Chem. A 83 (9) (2009) 1571.
[21] D.M. Mini c´ , Z. Nedi c´ , R. Markovi c´ , J. Therm. Anal. Calorim. 95 (2009) 167.
[
[
22] C.P. Andrieux, J.M. Saveant, in: C.F. Bernasconi (Ed.), Investigation of rates and
mechanisms of reactions, vol. 4, part 2, Wiley & Sons, New York, 1986.
23] RiegerF P.H. (Ed.), Electrochemistry, Chapman & Hall, New York, 1994, pp.
285–304.
2−
2−
2
b
or 1b (different resonance formulae of the same species,
[24] R. Markovi c´ , M. Baranac, Heterocycles 48 (1998) 893.
[
[
[
25] L.J. Aarons, F.C. Adams, Canad. J. Chem. 50 (1972) 1390.
26] H.C. Heller, J. Amer. Chem. Soc. 89 (1967) 4288.
27] R. Markovi c´ , M. Baranac, Z. D zˇ ambaski, J. Serb. Chem. Soc. 69 (4) (2004) 239.
shown in Scheme 2, step 3), was identified either starting from
compound 2 by electrochemical reduction or from compound 1 in
the presence of TBOH in DMSO. The proposed reaction mechanism
is supported by the experimental results and by the semiempirical
solvent–dependent PM3–MO calculations that were performed.
[28] M.M. Hansen, P.R. Harkness, D.S. Coffey, F.G. Bordwell, Y. Zhao, Tetrahedron
Lett. 49 (1995) 8949.
29] Li Chia-Yu, G.S. Wilson, Anal. Chem. 45 (1973) 2370.
[