1
5 S. C. Li, L. N. Lu and W. Zeng, J. Appl. Polym. Sci., 2009, 112,
4
. Conclusions
3
341–3346.
6 H. Zhang, H. T. Wang, W. Zhong and Q. G. Du, Polymer, 2009, 50,
596–1601.
1
Shape memory PU with azo as hard segments were synthesized
and characterized in the present study. Due to the increased
interaction, especially the induced dipole–dipole between the
chains, high strength and R and R of almost 99.9% were
1
1
1
7 W. Zhang, L. Chen and Y. Zhang, Polymer, 2009, 50, 1311–1315.
8 Y. K. Feng, M. Behl, S. Kelch and A. Lendlein, Macromol. Biosci.,
2009, 9, 45–54.
f
r
1
2
9 J. E. Gautrot and X. X. Zhu, Macromolecules, 2009, 42, 7324–7331.
0 M. M. Fan, Z. J. Yu, H. Y. Luo, Z. Sheng and B. J. Li, Macromol.
Rapid Commun., 2009, 30, 897–903.
obtained. The data presented suggest that the design of PU with
azo as chain extender can achieve excellent mechanical properties
and shape memory effect. Photoisomerization was observed both
in chloroform solution and the solid state. The trans-cis photo-
isomerization of the shape memory polyurethane is expected to
have very promising applications in specific fields. The light-
triggered shape memory polymers will be studied in the future.
21 A. Alteheld, Y. K. Feng, S. Kelch and A. Lendlein, Angew. Chem.,
Int. Ed., 2005, 44, 1188–1192.
2
2 A. Lendlein, J. Zotzmann, Y. Feng, A. Alteheld and S. Kelch,
Biomacromolecules, 2009, 10, 975–982.
3 J. H. Yang, B. C. Chun, Y. C. Chung and J. H. Cho, Polymer, 2003,
44, 3251–3258.
2
2
2
4 Y. Zhu, J. Hu and K. Yeung, Acta Biomater., 2009, 5, 3346–3357.
5 C. C. Tsai, C. C. Chang, C. S. Yu, S. A. Dai, T. M. Wu, W. C. Su,
C. N. Chen, F. M. C. Chen and R. J. Jeng, J. Mater. Chem., 2009,
Acknowledgements
1
9, 8484–8494.
6 W. M. Huang, B. Yang, Y. Zhao and Z. Ding, J. Mater. Chem., 2010,
0, 3367–3381.
2
2
2
The authors would like to acknowledge the innovative group
foundation from NSFC (Grant No. 50721062) and the impor-
tant direction project for the knowledge innovative engineering
of Chinese Academy of Sciences (Grant No. KGCX3-SYW-
2
7 T. Yamaoka, Y. Makita, H. Sasatani, S. I. Kim and Y. Kimura,
J. Controlled Release, 2000, 66, 187–197.
8 P. Alessio, D. M. Ferreira, A. E. Job, R. F. Aroca, A. Riul,
C. J. L. Constantino and E. R. P. Gonzalez, Langmuir, 2008, 24,
2
05), and the financial support of the National 973 project of
4
729–4737.
29 Y. L. Wu, A. Natansohn and P. Rochon, Macromolecules, 2004, 37,
090–6095.
China (2007CB607606).
6
3
3
3
3
3
3
0 Y. Y. Zhang, Z. P. Cheng, X. R. Chen, W. Zhang, J. H. Wu, J. Zhu
and X. L. Zhu, Macromolecules, 2007, 40, 4809–4817.
1 L. De Nardo, R. Alberti, A. Cigada, L. Yahia, M. C. Tanzi and
S. Fare, Acta Biomater., 2009, 5, 1508–1518.
2 K. Nagahama, Y. Ueda, T. Ouchi and Y. Ohya, Biomacromolecules,
References
1
2
3
S. H. Ajili, N. G. Ebrahimi and M. Soleimani, Acta Biomater., 2009,
, 1519–1530.
B. S. Lee, B. C. Chun, Y. C. Chung, K. I. Sul and J. W. Cho,
Macromolecules, 2001, 34, 6431–6437.
B. K. Kim, Y. J. Shin, S. M. Cho and H. M. Jeong, J. Polym. Sci.,
Part B: Polym. Phys., 2000, 38, 2652–2657.
5
2
009, 10, 1789–1794.
3 D. Acierno, E. Amendola, V. Bugatti, S. Concilio, L. Giorgini,
P. Iannelli and S. P. Piotto, Macromolecules, 2004, 37, 6418–6423.
4 A. Mishra, V. K. Aswal and P. Maiti, J. Phys. Chem. B, 2010, 114,
5
292–5300.
5 W. Wang, Y. Jin and Z. H. Su, J. Phys. Chem. B, 2009, 113,
5742–15746.
4
5
B. K. Kim, S. Y. Lee and M. Xu, Polymer, 1996, 37, 5781–5793.
H. M. Jeong, S. Y. Lee and B. K. Kim, J. Mater. Sci., 2000, 35, 1579–
1
1
583.
H. M. Jeong, J. B. Lee, S. Y. Lee and B. K. Kim, J. Mater. Sci., 2000,
5, 279–283.
H. Y. Luo, M. M. Fan, Z. J. Yu, X. W. Meng, B. J. Li and S. Zhang,
Macromol. Chem. Phys., 2009, 210, 669–676.
M. Behl, I. Bellin, S. Kelch, W. Wagermaier and A. Lendlein, Adv.
Funct. Mater., 2009, 19, 102–108.
A. T. Neffe, B. D. Hanh, S. Steuer and A. Lendlein, Adv. Mater.,
3
3
6 L. Xue, S. Y. Dai and Z. Li, Macromolecules, 2009, 42, 964–972.
7 M. Nagata and Y. Yamamoto, J. Polym. Sci., Part A: Polym. Chem.,
6
7
8
9
3
2
009, 47, 2422–2433.
3
3
4
8 W. Deng, P. A. Albouy, E. Lacaze, P. Keller, X. G. Wang and
M. H. Li, Macromolecules, 2008, 41, 2459–2466.
9 X. Q. Zhu, J. H. Liu, Y. X. Liu and E. Q. Chen, Polymer, 2008, 49,
3
103–3110.
0 Y. B. Li, Y. H. Deng, Y. N. He, X. L. Tong and X. G. Wang,
Langmuir, 2005, 21, 6567–6571.
2
009, 21, 3394–3398.
0 J. R. Lowe, W. B. Tolman and M. A. Hillmyer, Biomacromolecules,
009, 10, 2003–2008.
1 S. Neuss, I. Blomenkamp, R. Stainforth, D. Boltersdorf, M. Jansen,
N. Butz, A. Perez-Bouza and R. Knuchel, Biomaterials, 2009, 30,
1
1
4
4
1 R. S. McLean and B. B. Sauer, Macromolecules, 1997, 30, 8314–8317.
2 R. S. Waletzko, L. T. J. Korley, B. D. Pate, E. L. Thomas and
P. T. Hammond, Macromolecules, 2009, 42, 2041–2053.
2
4
4
4
3 H. Y. Jiang, S. Kelch and A. Lendlein, Adv. Mater., 2006, 18,
471–1475.
4 J. Gao, Y. N. He, H. P. Xu, B. Song, X. Zhang, Z. Q. Wang and
X. G. Wang, Chem. Mater., 2007, 19, 14–17.
5 X. Tong, G. Wang, A. Soldera and Y. Zhao, J. Phys. Chem. B, 2005,
1
697–1705.
1
1
2 X. T. Zheng, S. B. Zhou, Y. Xiao, X. J. Yu, X. H. Li and P. Z. Wu,
Colloids Surf., B, 2009, 71, 67–72.
3 L. L. Liu and W. Cai, Mater. Lett., 2009, 63, 1656–1658.
4 K. Inoue, M. Yamashiro and M. Iji, J. Appl. Polym. Sci., 2009, 112,
1
1
1
09, 20281–20287.
8
76–885.
This journal is ª The Royal Society of Chemistry 2010
J. Mater. Chem., 2010, 20, 9976–9981 | 9981