10.1002/anie.201800585
Angewandte Chemie International Edition
COMMUNICATION
Chem. Eur. J. 2016, 22, 9375-9386; d) L. Shi, Z. Liu, G. Dong, L. Duan,
Y. Qiu, J. Jia, W. Guo, D. Zhao, D. Cui, X. Tao, Chem. Eur. J. 2012, 18,
8092-8099; e) S. Sahasithiwat, T. Sooksimuang, L. Kangkaew, W.
Panchan, Dyes Pigment. 2017, 136, 754-760; f) J. R. Brandt, X. Wang,
Y. Yang, A. J. Campbell, M. J. Fuchter, J. Am. Chem. Soc. 2016, 138,
9743-9746.
In summary, we synthesized and in depth characterized the first
member of a novel family of π-extended helical chromophores. A
straightforward four-step synthetic protocol was developed
starting from diphenylether. We documented the outstanding
photophysical properties of helical rather than planar HBC
relatives. Currently, we perform complementary investigations
with these novel π-extended helicenes including the tailored
synthesis of even more intriguing members of this molecular
family. Additionally, we are focusing on the enantiomeric
separation and device fabrication such as light emitting devices.
[9]
G. Lewińska, K. S. Danel, J. Sanetra, Solar Energy, 2016, 135, 848-853.
[10] a) D. Schweinfurth, M. Zalibera, M. Kathan, C. Shen, M. Mazzolini, N.
Trapp, J. Crassous, G. Gescheidt, F. Diederich, J. Am. Chem. Soc.
2014, 136, 13045-13052; b) H. Isla, J. Crassous, C. R. Chim. 2016, 19,
39-49; c) C. Shen, G. Loas, M. Srebro-Hooper, N. Vanthuye, L. Toupet,
O. Cador, F. Paul, J. T. L. Navarrete, F. J. Ramírez, B. Nieto-Ortega, J.
Casado, J. Autschbach, M. Vallet, J. Crassous, Angew. Chem. Int. Ed.
2016, 55, 8062-8066; d) B. L. Feringa, N. P. M. Huck, A. M. Schoevaars,
Adv. Mater. 1996, 8, 681-684.
Acknowledgements
[11] a) L. Shan, D. Liu, H. Li, X. Xu, B. Shan, J.-B. Xu, Q. Miao, Adv. Mater.
2015, 27, 3418–3423; b) S. Xiao, M. Myers, Q. Miao, S. Sanauer, K.
Pang, M. L. Steigerwald, C. Nuckolls, Angew. Chem. Int. Ed. 2005, 44,
7390-7394; c); Y. Yang, L. Yuan, B. Shan, Z. Liu, Q. Miao, Chem. Eur.
J. 2016, 22, 18620-18627; d) Y. Zhong, B. Kumar, S. Oh, M.T. Trinh, Y.
Wu, K. Elbert, P. Li, X. Zhu, S. Xiao, F. Ng, M. L. Steigerwald, C.
Nuckolls, J. Am. Chem. Soc. 2014, 136, 8122-8130.
We thankfully acknowledge the funding by the German
Research Council (DFG) through the Collaborative Research
Center SFB 953 (Synthetic Carbon Allotropes). D.R. thanks the
Graduate School Molecular Science (GSMS) for financial
support.
[12] a) K. Clays, K. Wostyn, A. Persoons, S. Maiorana, A. Papagni, C. A.
Daul, V. Weber, Chem. Phys. Lett. 2003, 372, 438-442; b) B. J. Coe, D.
Rusanova, V. D. Joshi, S. Sánchez, J. Vávra, D. Khobragade, L.
Severa, I. Cístřová, D. Šamen, R. Pohl, K. Clays, G. Depotter, B. S.
Brunschwig, F. Teplý, J. Org. Chem. 2016, 81, 1912-1920.
Keywords: Helical structures • π-extension • Polycyclic aromatic
hydrocarbons • Fluorescence • Photophysics
[13] R. Rieger, K. Müllen, J. Phys. Org. Chem. 2010, 23, 315-325.
[14] a) T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137,
7763-7768; b) T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc.
2016, 138, 3587-3595; c) F. Ammon, S. T. Sauer, R. Lippert, D.
Lungerich, D. Reger, F. Hampel, N. Jux, Org. Chem. Front. 2017, 4,
861-870; d) N. J. Schuster, D. W. Paley, S. Jockusch, F. Ng, M. L.
Steigerwald, C. Nuckolls, Angew. Chem. Int. Ed. 2016, 55, 13519-
13523; e) M. Daigle, D. Miao, A. Lucotti, M. Tommasini, J-F. Morin,
Angew. Chem. Int. Ed. 2017, 56, 6213-6217; f) Y. Hu, X-Y. Wang, P-X.
Peng, X-C. Wang, X-Y. Cao, X. Feng, K. Müllen, A. Narita, Angew.
Chem. Int. Ed. 2017, 56, 3374-3378.
[1]
Selected literature on PAHs: a) A. Narita, X-Y. Wang, X. Feng, K.
Müllen, Chem. Soc. Rev. 2015, 44, 6616-6643; b) C. Wang, H. Dong,
W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208-2267; c) Y. Segawa,
T. Maekawa, K. Itami, Angew. Chem. Int. Ed. 2015, 54, 66-81; d) J. Wu,
W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718-747; e) X. Feng, W.
Pisula, K. Müllen, Pure Appl. Chem. 2009, 81, 2203-2224.
[2]
[3]
Selected literature on non-planar PAHs: a) M. Ball, Y. Zhong, Y. Wu, C.
Schenck, F. Ng, M. Steigerwald, S. Xiao, C. Nuckolls, Acc. Chem. Res.
2015, 48, 267-276; b) C.B. Larsen, N.T. Lucas, Chem. N. Z. 2012, 76,
49-55; c) M. Rickhaus, M. Mayor, M. Juríĉek, Chem. Soc. Rev. 2016,
45, 1542-1556.
[15] For a very recent related publication, see: P. J. Evans, J. Ouyang, L.
Favereau, J. Crassous, I. Fernández, J. P. Hernáez, N. Martín,
10.1002/anie.201800798
T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2016, 138, 3587-
3595.
[4]
[5]
J. Meisenheimer, K. Witte, Chem. Ber. 1903, 36, 4153-4164.
[16] P. T. Herwig, V. Enkelmann, O. Schmelz, K. Müllen, Chem. Eur. J.
2000, 6, 1834-1839.
Selected literature on helical systems: a) Y. Shen, C-F. Chen, Chem.
Rev. 2012, 112, 1463-1535; b) M. Gingras, Chem. Soc. Rev. 2013, 42,
968-1006; c) M. Gingras, G. Félix, R. Peresutti, Chem. Soc. Rev. 2013,
4, 2018-2023; d) M. Gingras, Chem. Soc. Rev. 2013, 42, 1051-1095.
a) K. Yamamoto, T. Shimizu, K. Igawa, K. Tomooka, G. Hirai, H.
Suemune, K. Usui, Sci. Rep. 2016, 6, 36211-36218; b) D. Virieux, N.
Sevrain, T. Ayad, J.-L. Pirat, Adv. Heterocycl. Chem. 2015, 116, 1-47;
c) Z. Krausová, P. Sehnal, B. P. Bondzic, S. Chercheja, P. Eilbracht, I.
G. Stará, D. Šaman, I. Starý, Eur. J. Org. Chem, 2011, 3849-3857; d) P.
Aillard, D. Dova, V. Magné, P. Retailleau, S. Cauteruccio, E. Licandro,
A. Voituriez, A. Marinetti, Chem. Commun. 2016, 52, 10984; e) K.
Yavari, P. Aillard, Y. Zhang, F. Nuter, P. Retailleau, A. Voituriez, A.
Marinetti, Angew. Chem. Int. Ed. 2014, 53, 861-865.
[17] K. Nakano, Y. Hidehira, K. Takahashi, T. Hiyama, K. Nozaki, Angew.
Chem. Int. Ed. 2005, 44, 7136-7138.
[18] Footnote: The auto-oxidation of 5 results in an absorption spectrum,
which also features the characteristics of 6.
[6]
[19] Footnote: As
5 auto-oxidizes under illumination the fluorescence
quantum yields of 5 feature contributions from 6. Uncorrected, the
quantum yield is then 12.1 %. Corrections of the absorption and
fluorescence spectra by subtracting the absorption and fluorescence
features of 6 lead to quantum yields of 6.4 %.
[20] Footnote: In line with the energy gap law of the fluorescence, the red-
shifted fluorescence of superhelicene 6 is linked to shorter lifetimes as
non-radiative deactivation channels start to dominate. This stands,
however, in sharp contrast to the fluorescence quantum yields of
superhelicene , which are higher than those noted for the in the blue
region emitting HBCs 5 and 7. A likely rationale is the lower symmetry
of superhelicene 6 when compared to the parent HBCs.
[7]
[8]
a) D. Dova, L. Viglianti, P. R. Mussini, S. Prager, A. Dreuw, A. Voituriez,
E. Licandro, S. Cauteruccio, Asian J. Org. Chem. 2016, 5, 537-549; b)
P. Aillard, A. Voituriez, A. Marinetti, Dalton Trans. 2014, 43, 15263-
15278; c) Z. Peng, N. Takenaka, Chem. Rec. 2013, 13, 28-42.
a) Y. Yang, R. C. da Costa, D-M. Smilgies, A. J. Campbell, M. J.
Fuchter, Adv. Mater. 2013, 25, 2624-2628; b) W. Hua, Z. Liu, L. Duan,
G. Dong, Y. Qiu, B. Zhang, D. Cui, X. Tao, N. Cheng, Y. Liu, RSC Adv.
2015, 5, 75-85; c) S. Jhulki, A. K. Mishra, T.J. Chow, J. N. Moorthy,
[21] D.L. Jeanmaire, M.R. Suchanski, R.P. Van Duyne, J. Am. Chem.
Soc. 1975, 97, 1699-1707.
This article is protected by copyright. All rights reserved.