3 (a) Z. Bao, J. A. Rogers and H. E. Katz, J. Mater. Chem., 1999, 9,
1895; (b) J. Locklin, D. Li, S. Mannsfeld, E. Borkent, H. Meng,
R. Advincula and Z. Bao, Chem. Mater., 2005, 17, 3366.
4 R. D. McCullough, R. D. Lowe, M. Jayaraman and D. L. Anderson,
J. Org. Chem., 1993, 58, 904; R. D. McCullough and R. D. Lowe,
J. Chem. Soc., Chem. Commun., 1992, 70.
effective in allowing inter-domain or interchain hopping. Phase
contrast AFM images of PMA thin films revealed a fairly
amorphous morphology with the presence of very small particles/
aggregates. We have found that systems with this type of
morphologies give good charge transport properties.
5 K. Lu, C. Di, H. Xi, Y. Liu, G. Yu, W. Qiu, H. Zhang, X. Gao,
Y. Liu, T. Qi, C. Du and D. Zhu, J. Mater. Chem., 2008, 18, 3426;
B. A. Jones, M. J. Ahrens, M. Yoon, A. Facchetti, T. J. Marks and
M. R. Wasielewski, Angew. Chem., Int. Ed., 2004, 43, 6363;
J. Ficker, A. Ullmann, W. Fix, H. Rost and W. Clemens, J. Appl.
Phys., 2003, 94, 2638; H. Rost, J. Ficker, J. S. Alonso, L. Leenders
and I. McCulloch, Synth. Met., 2004, 145, 83.
6 Z. Bao, Y. Feng and A. Dodabalapur, Chem. Mater., 1997, 9, 1299–
1301; H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda,
M. Inbasekaran, W. Wu and E. P. Woo, Science, 2000, 290, 2123–
2126.
7 B. S. Ong, Y. Wu, P. Liu and S. Gardner, J. Am. Chem. Soc., 2004,
126, 3378.
8 M. Funahashi and J. I. Hanna, Adv. Mater., 2005, 17, 594;
M. H. Yoon, A. Facchetti, C. E. Stern and T. J. Marks, J. Am.
Chem. Soc., 2006, 128, 5792.
X-ray data on thin films of PMC reveal highly crystalline
microstructures with preferred orientations with the p-system
normal to the surface (Fig. SI2–SI4†). PMC thin films appeared
to be more isotropic, with one preferred orientation parallel to
the substrate and another ꢃ 45 degree to the substrate. On the
other hand, PMD thin films before and after thermal annealing
revealed relatively poorly crystalline microstructures, but still
with preferred orientation. Both these polymers showed no
improvement in the intensity of the scatter peaks after thermal
annealing. The film of polymer PMG revealed highly crystalline
microstructures with preferred orientation. The peak intensities
increase substantially after thermal annealing, the FWHM of the
peaks become narrower and peaks up to the fourth order also
appear in the thermally annealed film (Fig. SI2†). Though
polymers PMC and PMG showed similar molecular ordering to
P3HT, these polymers showed decreased charge mobilities. This
could be due to charge trapping within the polymer. On the other
hand, PMA and PMH showed similar scatter profiles (Fig. SI5†),
indicating a fairly amorphous morphology (although PMH has
a nanofibrillar structure). It is interesting to note that the poly-
mers that gave the highest mobilities (PMA and PMH) were the
least crystalline, while polymers that were highly crystalline had
poor mobilities. PMD, which has intermediate crystallinity, also
showed intermediate charge transport properties.
9 Y. Zhou, W. J. Liu, Y. Ma, H. Wang, L. Qi, Y. Cao, J. Wang and
J. Pei, J. Am. Chem. Soc., 2007, 129, 12386.
10 P. B. Shea, J. Kanicki and N. Ono, J. Appl. Phys., 2005, 98, 014503;
P. Checcoli, G. Conte, S. Salvatori, R. Paolesse, A. Bolognesi,
A. Berliocchi, F. Brunetti, A. D’Amido, A. Di Carlo and P. Lugli,
Synth. Met., 2003, 138, 261; Y. Y. Noh, J. J. Kim, Y. Yoshida and
K. Yase, Adv. Mater., 2003, 15, 699; Z. Bao, A. J. Lovinger and
A. Dodabalapur, Appl. Phys. Lett., 1996, 69, 3066.
11 J. M. Maud, N. J. Thompson, T. J. Mansikka, A. J. Salih and
J. M. Marshall, Synth. Met., 1999, 102, 984.
12 Y. Li, Y. Wu, P. Liu, M. Birau, H. Pan and B. S. Ong, Adv. Mater.,
2006, 18, 3029; F. Cicoira, C. Santato, M. Melucci, L. Favaretto,
M. Gazzano, M. Muccini and G. Barbarella, Adv. Mater., 2006,
18, 169; T. Okamoto, K. Kudoh, A. Wakamiya and
S. Yamaguchi, Chem.–Eur. J., 2007, 13, 548; H. S. Kim,
Y. H. Kim, T. H. Kim, Y. Y. Noh, S. Pyo, M. H. Yi, D. Y. Kim
and S. K. Kwon, Chem. Mater., 2007, 19, 3561; M. Hang,
H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra and K. Muellen,
J. Am. Chem. Soc., 2007, 129, 2744.
4. Conclusions
We surveyed a series of novel and solution processable semi-
conducting polymers based on selenolo[3.2-b]thiophene. Poly-
mers were characterized by UV-Vis spectroscopy and cyclic
voltammetry, and show excellent optoelectronic properties.
Polymer analysis of device performance in field-effect transistors
showed high field-effect mobility values and on/off ratios even
without annealing. The deeper HOMO levels may also indicate
increased stability towards doping at ambient conditions. All in
all, these characteristics may promote the use of these polymers
for large area device fabrication. The performance of the poly-
mers as the active layer in field effect transistors showed promise
for use in printable electronics. We also observed that there
seemed to be a relationship between polymer crystallinity and
charge transport properties - the most amorphous (least crys-
talline) polymers gave the highest mobilities. Although our main
focus was on the OFET properties, the very broad absorption in
the UV-Vis region, as well as the low band gap properties, also
point toward some of the polymers as attractive materials for
organic solar cells.
13 E. Ahmed, A. L. Briseno, Y. Xia and S. A. Jenekhe, J. Am. Chem.
Soc., 2008, 130, 1118; H. Pang, F. Vilela, P. J. Skabara,
J. J. W. McDouall, D. J. Crouch, T. D. Anthopoulos,
D. D. C. Bradley, D. M. de Leeuw, P. N. Horton and
M. B. Hursthouse, Adv. Mater., 2007, 19, 4438; H. Usta, G. Lu,
A. Facchetti and T. J. Marks, J. Am. Chem. Soc., 2006, 128, 9034;
L. Liang, C. Ali, C. Qinghui, E. K. Frank and P. Yi, J. Polym. Sci.,
Part A: Polym. Chem., 2007, 45, 2048.
14 R. Coppo and M. L. Turner, J. Mater. Chem., 2005, 15, 1123.
15 Y. M. Kim, E. Lim, I. N. Kang, B. J. Jung, J. Lee, B. W. Koo,
L. M. Do and H. K. Shim, Macromolecules, 2006, 39, 4081.
16 (a) A. M. Ballantyne, L. Chen, J. Nelson, D. D. C. Bradley, Y. Astuti,
A. Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy and
I. McCulloch, Adv. Mater., 2007, 19, 4544; (b) K. Takimiya,
Y. Kunugi, Y. Konda, H. Ebata, Y. Toyoshima and T. Otsubo,
J. Am. Chem. Soc., 2006, 128, 3044; (c) K. Takimiya, Y. Konda,
H. Ebata, N. Niihara and T. Otsubo, J. Org. Chem., 2005, 70, 10569.
17 M. R. Bryce, J. Mater. Chem., 1995, 5, 1481.
18 Y. Kunugi, K. Takimiya, Y. Toyoshima, K. Yamashita, Y. Aso and
T. Otsubo, J. Mater. Chem., 2004, 14, 1367; D. J. Crouch,
P. J. Skabara, J. E. Lohr, J. J. W. McDouall, M. Heeney,
I. McCulloch, D. Sparrowe, M. Shkunov, S. J. Coles, P. N. Horton
and M. B. Hursthouse, Chem. Mater., 2005, 17, 6567.
19 S. S. Zade and M. Bendikov, Org. Lett., 2006, 8, 5243; U. Salzner,
J. B. Lagowski, P. G. Pickup and R. A. Poirier, Synth. Met., 1998,
96, 177.
5. Notes and references
20 H. Pang, P. J. Skabara, S. Gordeyev and J. J. W. McDouall, Chem.
Mater., 2007, 19, 301.
21 A. Patra, Y. H. Wijsboom, S. S. Zade, M. Li, Y. Sheynin, G. Leitus
and M. Bendikov, J. Am. Chem. Soc., 2008, 130, 6734.
1 H. Sirringhaus, N. Tessler and R. H. Friend, Science, 1998, 280, 1741;
Z. Bao, Adv. Mater., 2000, 12, 227; S. R. Forrest, Nature, 2004, 428,
911; T. A. Skotheim and J. R. Reynolds (Ed.), Handbook of
Conducting Polymers: Third Edition; CRC Press: Florida, USA, 2007.
2 A. Facchetti, M. H. Yoon and T. J. Marks, Adv. Mater., 2005, 17,
1705; K. Walzer, B. Maennig, M. Pfeiffer and K. Leo, Chem. Rev.,
2007, 107, 1233.
ꢁ
22 R. M. Zagorska and B. Krische, Polymer, 1990, 31, 1379; B. Liu,
W.-L. Yu, Y.-H. Lai and W. Huang, Macromolecules, 2000, 33, 8945.
23 J. I. Nanos, J. W. Kampf and M. D. Curtis, Chem. Mater., 1995, 7,
2232.
1560 | J. Mater. Chem., 2011, 21, 1551–1561
This journal is ª The Royal Society of Chemistry 2011