Please do not adjust margins
RSC Advances
Page 10 of 11
DOI: 10.1039/C6RA19725F
Paper
RSC Advances
5
6
(a) V. Calo, A. Nacci, A. Monopoli, E. Ieva and N. Cioffi,
Org. Lett., 2005, , 617-620;(b) Y. Liu, D. Li and C. M. Park,
of organic phase from PEG filtrate by aid of adding water. At
the end, the diethyl ether was evaporated in order to obtain
corresponding biaryl product. The melting point of the final
products were measured at the end. The biaryl products were
characterized by H NMR spectra. The selected H NMR data
for compounds 1 and 6 are in good agreement with those
previously reported.
7
Angew. Che. Int. Ed., 2011, 50, 7333-7336;(c) N. Gigant
and I. Gillaizeau, Org. Lett., 2012, 14, 3304-3307.
S. S. Miri, M. Khoobi, F. Ashouri, F. Jafarpour, P. R.
Ranjbar and A. Shafiee, Turk. J. Chem., 2015, 39, 1232-
1246.
M. B. Thathagar, J. Beckers and G. Rothenberg, J. Am.
Chem. Soc., 2002, 124, 11858-11859.
B. Wang, P. Yang, Z. W. Ge and C. P. Li, Inorg. Chem.
Commun., 2015, 61, 13-15.
1
1
7
8
9
1,1'-Biphenyl: 1H NMR (400 MHz, CDCl3): δH (ppm)= 7.62-7.64 (m,
4H), 7.40-7.50 (m, 4H), 7.36-7.40 (tt, J=7.6, 1.2 Hz, 2H).
4-Nitro-1,1'-biphenyl: 1H NMR (400 MHz, CDCl3): δH (ppm)= 8.31-
8.34 (dt, J= 8.8, 2.4 Hz, 2H), 7.75-7.78 (dt, J= 8.8, 2.4 Hz, 2H), 7.64-
7.67 (m, 2H), 7.50-7.55 (m, 2H), 7.45-7.49 (tt, J= 7.6, 2.4 Hz, 1H).
A. Fodor, Z. Hell and L. Pirault-Roy, Appl. Catal. A-Gen.,
2014, 484, 39-50.
10 S. J. Kim, S. D. Oh, S. Lee and S. H. Choi, J. Ind. Eng. Chem.,
2008, 14, 49-456.
11
(a) B. Karimi and P. Fadavi Akhavan, Chem. Commun.,
2011, 47 7686;(b) S. Rostamnia and H. Xin, Appl.
4.4. General procedure for Stille reaction
,
A mixture of aryl halides (1 mmol), Ph3SnCl (0.5 mmol), Na2CO3
(3 mmol), SBA-Cu2+ nano catalyst (10 mg) and 2 mL solvent
(PEG) were added to a test tube equipped with a magnetic
stirrer bar. Until the completion of reaction, the mixture was
heated at 80 °C and monitored by TLC to evaluate progress of
reaction. After completion, the mixture was cooled down and
catalyst was filtered off. Then separated catalyst washed
several times via acetone and dried in oven. In a separating
funnel, diethyl ether (4mL, 4 times) was utilized to extraction
of organic phase from PEG filtrate by aid of adding water. At
the end, the diethyl ether was evaporated in order to obtain
corresponding biaryl product. The melting point of the final
products were measured at the end. The biaryl products were
Organomet. Chem., 2013, 27, 348;(c) R. Zhang, W. Ding,
B. Tu and D. Zhao, Chem. Mater., 2007, 19, 4379;(d) S.
Mandal, D. Roy, R.V. Chaudhari and M. Sastry, Chem.
Mater., 2004, 16, 3714;(e) C. D. Wu, A. Hu, L. Zhang and
W. B. Lin, J. Am. Chem. Soc., 2005, 127, 8940;(f) X. Pan, Z.
Fan, W. Chen, Y. Ding, H. Luo and X. Bao, Nat. Mater.,
2007,
A. Solhy, V. Martinez, Y. Kihn, O. Ersen, K. Philippot, B.
Chaudret and P. Serp, Angew. Chem. Int. Ed., 2009, 48
6, 507;(g) E. Castillejos, P.J. Debouttiere, L. Roiban,
,
2529;(h) L. Bai and J. X. Wang, Adv. Synth. Catal., 2008,
350, 315.
12 A. A. Derakhshan, L. Rajabi and H. Karimnezhad, Powder.
Technol., 2012, 225, 156–166.
13 (a) F. Surivet, T. M. Lam, J. P. Pascualt and C. Mai,
1
1
characterized by H NMR spectra. The selected H NMR data
for compounds 2 and 7 are in good agreement with those
previously reported.
Macromolecules., 1992, 25
Whitesides, J. P. Mathias and C.T. Seto, Science., 1991,
254, 1312–1319.
,
5742–5751;(b) G. M.
4-Methyl-1,1'-biphenyl: 1H NMR (400 MHz, CDCl3): δH (ppm)=
14 L. Rajabi and A. A. Derakhshan, Sci. Adv. Mater., 2010,
163–172.
15 J. Liu, X. Liao and B. Shi, Res. Chem. Intermed., 2014, 40
249-258.
16 A. A. Derakhshan and L. Rajabi, Powder. Technol., 2012,
226, 117–129.
17 S. J. Obrey and A. R. Barron, Macromolecules., 2002, 35
2,
7.63-7.65 (m, 2H), 7.55-7.57 (m, 2H), 7.46-7.52 (m, 2H), 7.36-
7.40 (tt, J= 7.2, 1.2 Hz, 1H), 7.30-7.32 (d, J= 8 Hz, 2H), 2.46 (s,
3H).
[1,1'-Biphenyl]-4-carbonitrile: 1H NMR (400 MHz, CDCl3): δH
(ppm)= 7.74-7.77 (m, 2H), 7.69-7.72 (m, 2H), 7.60-7.63 (m, 2H),
7.49-7.53 (m, 2H), 7.43-7.47 (m, 1H).
,
,
1499–1503.
18 C. C. Landry, N. Pappe, M. R. Mason, A. W. Apblett, A. N.
Tyler, A. N. Maclnnes and A. R.Barron, J. Mater. Chem.,
1995, 5, 331-341.
19 S. A. Abdel-Latif, H. B. Hassib and Y. M. Issa, Spectrochim.
Acta. A., 2007, 67, 950–957.
20 B. Wang, X. L. Wu, C. Y. Shu, Y. G. Guo and C. R. Wang, J.
Mat. Chem., 2010, 20, 10661-10664.
Acknowledgements
Authors thank Ilam University and Iran National Science
Foundation (INSF) for financial support of this research project.
References
21 D. B. Briggs, R. T. Pekarek and M. R. Knecht, J. Phys.
Chem. C, 2014, 118, 18543.
1
(a) A. M .Trzeciak and J. Ziolkowski, J. Coord. Chem. Rev.,
2005, 249, 2308-2322;(b) V. Farina, Adv. Synth. Catal.,
2004, 346, 1553-1582;(c) B. M. Choudary, S. Madhi, N. S.
Chowdari, M. L. Kantam and B. Sreedhar, J. Am. Chem.
22 Y. Y. Peng, J. Liu, X. Lei and Z. Yin, Green Chem., 2010, 12
1072.
23 L. Bai and J. X. Wang, Adv. Synth. Catal., 2008, 350, 315.
,
Soc., 2002, 124,
Leumann, J. Org. Lett., 2001,
14127-14136;(d) A. Haberli and C.
, 489-492.
24 E. H. Binns and K. H. Squire, Trans. Faraday Soc., 1962,
58, 762-770.
3
2
(a) M. Tobisu, T. Xu, T. Shimasaki and N. Chatani, J. Am.
Chem. Soc., 2011, 133, 19505;(b) J. H. Li, Y. Liang and Y. Y.
Xie, Tetrahedron., 2005, 61, 7289;(c) A. Ghorbani-
25 B. J. Haworth, I. M. Heibron and D. H. Hey, J. Chem. SOC.,
1940, 349.
26 Y. Leng, J. Liu, C. Zhang and P. Jiang, Catal. Sci. Technol.,
Choghamarani and M. Norouzi, Appl. Organometal.
Chem., 2016, 30, 140–147.
2014, 4, 997-1004.
3
4
(a) B. C. Makhubela, A. Jardine and G. S. Smith, Appl.
Catal. A-Gen., 2011, 393, 231-241;(b) N. Iranpoor, H.
Firouzabadi, S. Motevalli and M. Talebi, J. Organomet.
Chem., 2012, 708, 118-124.
J. Mao, J. Guo, F. Fang and S. J. Ji, Tetrahedron., 2008, 64
3905-3911.
,
10 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins