Catalytic Lanthanide Complexes
FULL PAPER
J=7 Hz, 1H), 1.32 (m, 10H), 1.07 (d, J=7 Hz, 3H), 0.93 ppm (dd, J=10,
J=9 Hz, 1H); 13C NMR (CDCl3, 208C): d=59.30, 54.42, 47.84, 44.37,
39.00, 37.62, 26.46, 24.24, 24.06, 21.71 ppm; IR (NaCl, CCl4): n˜ =3854
(w), 3747 (w), 3672 (w), 3650 (w), 3630 (w), 2928 (s), 2856 (m), 1450 (w),
Arredondo, C. L. Stern, T. J. Marks, Organometallics 1999, 18, 2568–
2570; g) G. A. Molander, E. D. Dowdy, J. Org. Chem. 1999, 64,
6515–6517; h) G. A. Molander, E. D. Dowdy, S. K. Pack, J. Org.
Chem. 2001, 66, 4344–4347; i) J. S. Ryu, T. J. Marks, F. E. McDonald,
Org. Lett. 2001, 3, 3091–3094.
1376 cmꢀ1 (w); MS (electrospray): m/z (%): 154.2 (100) [M+H]+; [a]2D0
+28 (c=1, CHCl3); 66% enantiomeric excess.
=
[7] a) Y. Li, P. F. Fu, T. J. Marks, Organometallics 1994, 13, 439–440;
b) Y. Li, T. J. Marks, J. Am. Chem. Soc. 1996, 118, 707–708; c) Y. Li,
T. J. Marks, J. Am. Chem. Soc. 1996, 118, 9295–9306; d) Y. Li, T. J.
Marks, J. Am. Chem. Soc. 1998, 120, 1757–1771.
[8] S. Hong, T. J. Marks, J. Am. Chem. Soc. 2002, 124, 7886–7887.
[9] a) V. M. Arredondo, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc.
1998, 120, 4871–4872; b) V. M. Arredondo, F. E. McDonald, T. J.
Marks, Organometallics 1999, 18, 1949–1960; c) V. M. Arredondo, S.
Tian, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc. 1999, 121,
3633–3639.
[10] a) M. R. Gagnꢀ, L. Brard, V. P. Conticello, M. A. Giardello, C. L.
Stern, T. J. Marks, Organometallics 1992, 11, 2003–2005; b) M. A.
Giardello, V. P. Conticello, L. Brard, M. Sabat, A. L. Rheingold,
C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1994, 116, 10212–10240;
c) M. A. Giardello, V. P. Conticello, L. Brard, M. R. Gagnꢀ, T. J.
Marks, J. Am. Chem. Soc. 1994, 116, 10241–10254.
[11] a) M. R. Douglass, M. Ogasawara, S. Hong, M. V. Metz, T. J. Marks,
Organometallics 2002, 21, 283–292; b) J. S. Ryu, T. J. Marks, F. E.
McDonald, J. Org. Chem. 2004, 69, 1038–1052.
Crystal structure determinations: Single crystals for the four compounds
were mounted under inert perfluoropolyether at the tip of a glass fiber
and cooled in the cryostream of the diffractometer. All data were collect-
ed on a Stoe IPDS diffractometer operating with monochromatic MoKa
radiation (l=0.71073).
The structures were solved by direct methods (SIR92)[38] and refined by
full-matrix least-squares procedures on F using the CRYSTALS pro-
gram.[39] A semiempirical absorption correction based on equivalent re-
flections was applied for all four compounds. All H atoms were intro-
duced into the calculation in idealized positions (d(CH)=1.0 ꢂ) and
treated as riding models. The [Li(thf)4] cations and the THF solvent mol-
ecule were refined isotropically. The weighting scheme used in the last
P
refinement cycles was w=w’[1ꢀ{DF/6s(Fo)}2]2, in which w’=1/ nArTr(x)
1
with three coefficients Ar for the Chebyshev polynomial ArTr(x) in which
x is Fc/Fc(max).[40] Models reached convergence with R=ꢀ(jjFojꢀjFc jj)/
ꢀ(jFoj) and Rw =[ꢀw(jFojꢀjFcj)2/ꢀw(F2o)]1/2. Final refinements allowed the
fraction contribution of the inverted enantiomer to vary,[41] with the
Flack parameter quoted being the refined value of this contribution.
Crystal data and refinement parameters are shown in Table 3. The views
of the molecules in Figures 1–4 were produced with ORTEP III for Win-
dows.[42]
[12] a) Y. K. Kim, T. Livinghouse, J. E. Bercaw, Tetrahedron Lett. 2001,
42, 2933–2935; b) Y. K. Kim, L. Livinghouse, Angew. Chem. 2002,
114, 3797–3799; Angew. Chem. Int. Ed. 2002, 41, 3645–3647.
[13] a) Y. K. Kim, T. Livinghouse, Y. Horino, J. Am. Chem. Soc. 2003,
125, 9560–9561; b) M. R. Bꢆrgstein, H. Berberich, P. W. Roesky, Or-
ganometallics 1998, 17, 1452–1454; c) K. C. Hultzsch, F. Hampel, T.
Wagner, Organometallics 2004, 23, 2601–2612.
CCDC-256428–CCDC-256431 contain the supplementary crystallograph-
ic data for this paper. These data can be obtained free of charge via
[14] P. N. OꢃShaughnessy, P. Scott, Tetrahedron: Asymmetry 2003, 14,
1979–1983.
[15] P. N. OꢃShaughnessy, P. D. Knight, C. Morton, K. M. Gillepsie, P.
Scott, Chem. Commun. 2003, 1770–1771.
Acknowledgements
[16] P. D. Knight, I. Munslow, P. N. OꢃShaughnessy, P. Scott, Chem.
Commun. 2004, 894–895.
[17] D. V. Gribkov, K. C. Hultzsch, F. Hampel, Chem. Eur. J. 2003, 9,
4796–4810.
[18] D. V. Gribkov, K. C. Hultzsch, Chem. Commun. 2004, 730–731.
[19] S. Hong, S. Tian, M. V. Metz, T. J. Marks, J. Am. Chem. Soc. 2003,
125, 14768–14783.
This work has been supported by the CNRS and the Russian Academy
of Sciences (joint project no. 12235). A.T. thanks the Russian Foundation
of Basic Research for financial support (grant no. 05-03-32390-a). We
gratefully acknowledge Olivia Gandois and Carine Duhayon for techni-
cal assistance.
[20] a) S. Hong, T. J. Marks, J. Am. Chem. Soc. 2002, 124, 7886–7887;
b) S. Hong, A. M. Kawaoka, T. J. Marks, J. Am. Chem. Soc. 2003,
125, 15878–15892.
[21] J. M. Hoover, J. R. Petersen, J. H. Pikul, A. R. Johnson, Organome-
tallics 2004, 23, 4614–4620.
[22] M. Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187–2209.
[23] S. Kobayashi, M. Sugiura, H. Kitagawa, W. L. Lam, Chem. Rev.
2002, 102, 2227–2302.
[1] J. W. Daly, T. F. Spande in Alkaloids: Chemical and Biological Per-
spectives, Vol. 4 (Ed.: S. W. Pelletier), Wiley, New York, 1986, Chap-
ter 1.
[2] B. M. Trost, Science 1991, 254, 1471–1477; B. M. Trost, Angew.
Chem. 1995, 107, 285–307, Angew. Chem. Int. Ed. Engl. 1995, 34,
259–281.
[3] R. A. Sheldon, Chem. Ind. 1992, 903.
[4] For general reviews on hydroamination reactions, see: a) T. E.
Mꢅller, M. Beller, Chem. Rev. 1998, 98, 675–703; b) M. Nobis, B.
Driessen-Hçlscher, Angew. Chem. 2001, 113, 4105–4108; Angew.
Chem. Int. Ed. 2001, 40, 3983–3985; c) J. J. Brunet, D. Neibecker in
Catalytic Heterofunctionalization from Hydroamination to Hydrozir-
conation (Eds.: A. Togni, H. Grꢆtzmacher), Wiley-VCH, Weinheim,
2001, pp. 91–141; d) P. W. Roesky, T. E. Muller, Angew. Chem. 2003,
115, 2812–2814; Angew. Chem. Int. Ed. 2003, 42, 2708–2710; e) F.
Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104–114; f) M. Beller, A.
Tillack, J. Seayad in Transition Metals for Organic Synthesis, Vol. 2,
2nd ed. (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2004,
pp. 403–414.
[5] S. Hong, T. J. Marks, Acc. Chem. Res. 2004, 37, 673–686.
[6] a) M. R. Gagnꢀ, T. J. Marks, J. Am. Chem. Soc. 1989, 111, 4108–
4110; b) M. R. Gagnꢀ, S. P. Nolan, T. J. Marks, Organometallics
1990, 9, 1716–1718; c) M. R. Gagnꢀ, C. L. Stern, T. J. Marks, J. Am.
Chem. Soc. 1992, 114, 275–294; d) P. W. Roesky, C. L. Stern, T. J.
Marks, Organometallics 1997, 16, 4705–4711; e) G. A. Molander,
E. D. Dowdy, J. Org. Chem. 1998, 63, 8983–8988; f) S. Tian, V. M.
[24] H. C. Aspinall, Chem. Rev. 2002, 102, 1807–1850.
[25] N. Yamagiwa, S. Matsunaga, M. Shibasaki, Angew. Chem. 2004, 116,
4593–4597; Angew. Chem. Int. Ed. 2004, 43, 4493–4497; N. Yamagi-
wa, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2003, 125,
16178–16179.
[26] J. Collin, J.-C. Daran, E. Schulz, A. Trifonov, Chem. Commun. 2003,
3048–3049.
[27] C. Drost, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc. Dalton Trans.
1996, 3595–3601.
[28] W. J. Evans, M. A. Hozbor, J. Organomet. Chem. 1987, 326, 299–
306.
[29] a) K. Kabuto, T. Yoshida, S. Yamaguchi, S. Miyano, H. Hashimoto,
J. Org. Chem. 1985, 50, 3013–3015; b) S. Vyskocil, S. Jarazc, M.
ˇ
ˇ
ˇ
´
Smrcina, M. Stꢇcha, V. Hanus, M. Polꢈsek, P. Kocovsky, J. Org.
Chem. 1998, 63, 7727–7737.
[30] R. D. Schannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
[31] W. J. Evans, R. Anwander, J. W. Ziller, Inorg. Chem. 1995, 34, 5927–
5930.
Chem. Eur. J. 2005, 11, 3455 – 3462
ꢁ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3461