392
Helv. Chim. Acta 2016, 99, 384 – 392
neutrality. The mixture was extracted with Et O and
2
Commun. 2008, 5529; C. W. Cheung, D. S. Surry, S. L. Buch-
wald, Org. Lett. 2013, 15, 3734; C. W. Cheung, S. L. Buchwald,
Org. Lett. 2013, 15, 3998.
washed with brine. The combined organic extracts were
dried with Na SO and concentrated under vacuum. The
2
4
[
[
6] A. D. Palkowitz, A. L. Glasebrok, K. J. Thrasher, K. L. Hauser,
L. L. Short, D. L. Phillips, B. S. Muehl, M. Sato, P. K. Shetler,
G. J. Cullinan, T. R. Pell, H. U. Bryant, J. Med. Chem. 1997,
40, 1407; L. Chiummiento, M. Funicello, P. Lupattelli, F. Tra-
mutola, F. Berti, F. Marino-Merlo, Bioorg. Med. Chem. Lett.
2012, 22, 2948.
crude dense and dark brown oil was purified on chro-
matographic column packed with silica and eluted with
hexanes/Et O (9:1), to afford 434 mg (yield 35%) of 5-
2
nitro-1-benzothiophene (3b) (yellow solid; Rf 0.5 with
1
hexane/Et O 9:1). M.p.: 135 – 137°. H-NMR (400 MHz.
2
7] M. Funicello, P. Spagnolo, in ‘Targets in Heterocyclic Chem-
istry’, Vol. 8, Eds. O. A. Attanasi and D. Spinelli, Royal Society
of Chemistry, 2005, pp. 234 – 251; C. Bonini, M. Funicello, P.
Spagnolo, Synlett 2006, 1574; M. Funicello, V. Laboragine, R.
Pandolfo, P. Spagnolo, Synlett 2010, 77; A. Bochicchio, L. Chi-
ummiento, M. Funicello, M. T. Lopardo, P. Lupattelli, Tetrahe-
dron Lett. 2010, 51, 2824; L. Chiummiento, M. Funicello, F.
Tramutola, Chirality 2012, 24, 345.
CDCl ): 7.41 – 7.40 (d, 1 H); 7.57 – 7.56 (d, 1 H);
3
7
.89 – 7.87 (d, 1 H); 8.10 – 8.08 (d, 1 H); 8.61 (s, 1 H).
C-NMR (100 MHz, CDCl ): 118.48; 119.22; 122.93;
1
3
3
1
24.64; 129.95; 131.05; 139.24; 145.47. MS (EI, 70 eV): 179
+
100) [M ], 149 (11), 133 (71), 121 (22), 89 (51).
(
Theoretical Calculations
[8] C. Bonini, M. Funicello, R. Scialpi, P. Spagnolo, Tetrahedron
003, 59, 7515.
2
All the calculations were performed by using the Gaus-
sian 09 program, Revision A.02. Molecular structures
were optimized by using the Kohn–Sham’s DFT [16] with
the Becke’s three-parameter hybrid exchange-correlation
functional known as B3LYP [17]. The 6-31+G(d,p) basis
set was applied for all the calculations as implemented in
the Gaussian 09 program. All the optimized geometries
were obtained by using the standard thresholds for self-
consistent field computations and geometry optimizations.
Analytical evaluation of the energy second derivative
matrix (Hessian matrix) with respect to Cartesian coordi-
nates at the same level of approximation confirmed the
nature of minima and transition structures of the energy
surface points associated to the optimized structures. All
the computations have been performed by using the
Gaussian 09 standard approach which considers the mole-
cule in vacuum.
[9] S. Mukherjee, S. S. Jash, A. De, J. Chem. Res. (S) 1993, 192.
[10] L. F. Fieser, R. G. Kennelly, J. Am. Chem. Soc. 1935, 57, 1611.
[
11] S. P ꢁe rez-Silanes, J. Mart ꢁı nez-Esparza, A. M. Oficialdegui, H.
Villanueva, L. Or uꢁ s, A. Monge, J. Heterocycl. Chem. 2001, 38,
1
025.
[
12] L. Bianchi, C. Dell’Erba, M. Maccagno, G. Petrillo, E. Rizzato,
F. Sancassan, E. Severi, C. Tavani, J. Org. Chem. 2005, 70,
8734; B. Iddon, H. Suschitzky, D. S. Taylor, M. W. Pickering, J.
Chem. Soc, Perkin Trans. 1 1974, 575; K. J. Armstrong, M. Mar-
tin-Smith, N. M. D. Brown, G. C. Brophy, S. Sternhell, J. Chem.
Soc., C 1969, 1766; F. G. Bordwell, C. J. Albisetti Jr., J. Am.
Chem. Soc. 1948, 70, 1955.
[
13] Wolfram Research, Inc., Mathematica, Version 9.0.1.0, Cham-
paign, IL, 2013.
[14] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakat-
suji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J.
Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J.
E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.
N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.
Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dap-
prich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.
Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
REFERENCES
[
[
1] L. D. Quin, J. A. Tyrell, ‘The scope of the field of heterocyclic
chemistry’, in ‘Fundamentals of Heterocyclic Chemistry’, John
Wiley and Sons, Hoboken, NJ, USA, 2010, pp. 1 – 5.
2] a) S. Wang, R. Beck, T. Blench, A. Burd, S. Buxton, M. Malic,
T. Ayele, S. Shaikh, S. Chahwala, C. Chander, R. Holland, S.
Merette, L. Zhao, M. Blackney, A. Watts, J. Med. Chem. 2010,
53, 1465; b) I. Cerminara, L. Chiummiento, M. Funicello, A.
Guarnaccio, P. Lupattelli, Pharmaceuticals 2012, 5, 297.
3] J. Ohsita, K.-H. Lee, K. Kimura, A. Kunai, Organometallics
[
[
[
15] G. Klopman, J. Am. Chem. Soc. 1968, 90, 223; L. Salem, J. Am.
Chem. Soc. 1968, 90, 543; L. Salem, J. Am. Chem. Soc. 1968, 90,
2004, 23, 5622; H. Ebata, E. Miyazaki, T. Yamamoto, K. Taki-
miya, Org. Lett. 2007, 9, 4499.
5
53.
4] K. Kobayashi, D. Nakamura, S. Fukamachi, H. Konishi, Hetero-
cycles 2008, 75, 919; S. Yoshida, H. Yorimitsu, K. Oshima, Org.
Lett. 2007, 9, 5573; H. J. Jeong, U. Y. Yoon, S. H. Jang, U.-A.
Yoo, S. N. Kim, B. T. Truong, S. C. Shin, Y.-J. Yoon, O. M.
Singh, S.-G. Lee, Synlett 2007, 1407; C. T. Bui, B. L. Flynn, J.
Comb. Chem. 2006, 8, 163.
[
[
16] R. G. Parr, W. Wang, ‘Density Functional Theory of Atoms
and Molecules’, Oxford University Press, Oxford, 1989.
17] A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
Received November 9, 2015
Accepted March 7, 2016
[5] I. Nakamura, T. Sato, Y. Yamamoto, Angew. Chem., Int. Ed.
2006, 45, 4473; K. Inamoto, Y. Arai, K. Hiroya, T. Doi, Chem.
www.helv.wiley.com
© 2016 Verlag Helvetica Chimica Acta AG, Z u€ rich