Communication
ChemComm
all cases, the TABTA-COFs exhibited great robustness with well
retained crystallinity and chemical composition after treatments
under catalytic Knoevenagel condensation conditions (magenta
lines in Fig. S13 and S14, ESI†). To investigate the possible effect
of the imine bonds of TABTA-COFs on the catalytic activity, a
control experiment using TFPB-TAPB-COF as the catalyst with
a similar structure but without amides linkages was carried
out (Fig. S15 and Table S7, ESI†). The low catalytic efficiency
indicated that the amides play vital roles while the imines exert
less effect on the catalysis.
The recyclability of the catalysts is another significant metric
for practical applications. The reusability of TABTA-COF-2 with
better stability for catalyzing Knoevenagel condensation was
investigated in detail. Taking the Knoevenagel condensation
between benzaldehyde and malonitrile as an example, TABTA-
2 R.-R. Cheng, S.-X. Shao, H.-H. Wu, Y.-F. Niu, J. Han and X.-L. Zhao,
Inorg. Chem. Commun., 2014, 46, 226–228.
3
R. S. Forgan, R. J. Marshall, M. Struckmann, A. B. Bleine, D. Long,
M. C. Bernini and D. Fairen-Jimenez, CrystEngComm, 2015, 17,
299–306.
4
5
B. Zheng, H. Wang, Z. Wang, N. Ozaki, C. Hang, X. Luo, L. Huang,
W. Zeng, M. Yang and J. Duan, Chem. Commun., 2016, 52, 12988–12991.
O. Benson, I. Da Silva, S. P. Argent, R. Cabot, M. Savage, H. G. W.
Godfrey, Y. Yan, S. F. Parker, P. Manuel, M. J. Lennox, T. Mitra,
T. L. Easun, W. Lewis, A. J. Blake, E. Besley, S. Yang and M. Schr ¨o der,
J. Am. Chem. Soc., 2016, 138, 14828–14831.
2
6
6
7
8
9
X.-J. Hong, Q. Wei, Y.-P. Cai, S.-R. Zheng, Y. Yu, Y.-Z. Fan, X.-Y. Xu
and L.-P. Si, ACS Appl. Mater. Interfaces, 2017, 9, 4701–4708.
Z. Lu, J. Zhang, H. He, L. Du and C. Hang, Inorg. Chem. Front., 2017,
4, 736–740.
P.-Z. Li, X.-J. Wang, J. Liu, H. S. Phang, Y. Li and Y. Zhao, Chem.
Mater., 2017, 29, 9256–9261.
B. Zheng, L. Huang, X. Cao, S. Shen, H. Cao, C. Hang, W. Zeng and
Z. Wang, CrystEngComm, 2018, 20, 1874–1881.
10 K. Marchildon, Macromol. React. Eng., 2011, 5, 22–54.
COF-2 can effectively catalyze the reaction after at least 5 recycling 11 (a) L. Ma, J. Li, J. Xiong, G. Xu, Z. Liu and W. Cai, Polymers, 2017,
9
, 703; (b) N. Manoranjan, D. H. Won, J. Kim and S. I. Woo, J. CO
2
processes under identical experimental conditions (Table S9, ESI†).
Meanwhile, both the crystallinity and chemical structure of the
sample were also well retained after 5 cycles (Fig. S18 and S19, ESI†).
On the other hand, the condensation between malononitrile
and benzaldehyde showed very low conversion (24%) even after
Util., 2016, 16, 486–491.
2 (a) R. Ullah, M. Atilhan, B. Anaya, S. Al-Muhtaseb, S. Aparicio,
H. Patel, D. Thirion and C. T. Yavuz, ACS Appl. Mater. Interfaces,
1
2016, 8, 20772–20785; (b) T. F. A. De Greef, M. M. J. Smulders,
M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma and E. W. Meijer,
Chem. Rev., 2009, 109, 5687–5754.
1
h in the absence of COF catalysts (Table S6, ESI†), suggesting 13 D. B. Shinde, H. B. Aiyappa, M. Bhadra, B. P. Biswal, P. Wadge,
S. Kandambeth, B. Garai, T. Kundu, S. Kurungot and R. Banerjee,
J. Mater. Chem. A, 2016, 4, 2682–2690.
a high catalytic activity of the TABTA-COFs. The reusability of
TABTA-COF-1 is also summarized in Table S8 and Fig. S16
1
4 (a) X. Li, Z. Wang, J. Sun, J. Gao, Y. Zhao, P. Cheng, B. Aguila, S. Ma,
Y. Chen and Z. Zhang, Chem. Commun., 2019, 55, 5423–5426; (b) Q. Sun,
B. Aguila and S. Ma, Mater. Chem. Front., 2017, 1, 1310–1316; (c) Y. Song,
Q. Sun, B. Aguila and S. Ma, Adv. Sci., 2019, 6, 1801410.
(ESI†). The mesopores facilitating the mass transfer of sub-
strates along with the densely arranged amide functional groups
are beneficial to the catalytic performance.
1
1
1
1
5 P. Pachfule, S. Kandambeth, D. D ´ı az D ´ı az and R. Banerjee, Chem.
Commun., 2014, 50, 3169–3172.
6 F.-Z. Cui, J.-J. Xie, S.-Y. Jiang, S.-X. Gan, D.-L. Ma, R.-R. Liang,
G.-F. Jiang and X. Zhao, Chem. Commun., 2019, 55, 4550–4553.
7 N. Huang, X. Chen, R. Krishna and D. Jiang, Angew. Chem., Int. Ed.,
2015, 54, 2986–2990.
In summary, two new BTA-derived 2D COFs bearing amide
built-in functional groups were synthesized via a bottom-up strategy.
TABTA-COFs possessed crystallinity and exhibited high catalytic
activity toward Knoevenagel condensation with a broad substrate
scope and excellent recyclability. Further oxidation of the imine
bond linkages in TABTA-COF-1 to amide groups resulting in a fully
8 (a) L. Jiang, Y. Tian, T. Sun, Y. Zhu, H. Ren, X. Zou, Y. Ma, K. R.
Meihaus, J. R. Long and G. Zhu, J. Am. Chem. Soc., 2018, 140,
1
5724–15730; (b) Q. Fang, Z. Zhuang, S. Gu, R. B. Kaspar,
J. Zheng, J. Wang, S. Qiu and Y. Yan, Nat. Commun., 2014, 5, 4503;
c) K. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat, T. Zhang,
2D polyamide network with complete amide linkages is currently
(
underway in our laboratory. It could be envisioned that the intro-
duction of amide groups into the scaffolds could expand the scope
of functional COFs and the application of COF-based materials.
This work was financially supported by the National Key
Research and Development Program of China (2017YFA0207500),
the National Natural Science Foundation of China (51973153) and
the Natural Science Foundation of Tianjin City (17JCJQJC44600).
H. Sahabudeen, T. Heine, S. Mannsfeld, U. Kaiser, Z. Zheng and
X. Feng, Nat. Chem., 2019, 11, 994–1000; (d) M. S. Lohse and T. Bein,
Adv. Funct. Mater., 2018, 28, 1705553.
9 P. J. Waller, S. J. Lyle, T. M. Osborn Popp, C. S. Diercks, J. A. Reimer
and O. M. Yaghi, J. Am. Chem. Soc., 2016, 138, 15519–15522.
0 X. Han, J. Huang, C. Yuan, Y. Liu and Y. Cui, J. Am. Chem. Soc., 2018,
140, 892–895.
1
2
2
2
2
1 S. Cantekin, T. F. de Greef and A. R. Palmans, Chem. Soc. Rev., 2012,
41, 6125–6137.
2 V. M. Suresh, S. Bonakala, H. S. Atreya, S. Balasubramanian and
T. K. Maji, ACS Appl. Mater. Interfaces, 2014, 6, 4630–4637.
3 (a) A. Rehman and S. Park, Bull. Korean Chem. Soc., 2017, 38,
Conflicts of interest
1
285–1292; (b) R. Khatioda, D. Talukdar, B. Saikia, K. K. Bania
There are no conflicts to declare.
and B. Sarma, Catal. Sci. Technol., 2017, 7, 3143–3150.
2
4 J. Park, J. Li, Y. Chen, J. Yu, A. A. Yakovenko, Z. U. Wang, L. Sun,
P. B. Balbuena and H. Zhou, Chem. Commun., 2012, 48, 9995–9997.
5 S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki,
Y. Kinoshita and S. Kitagawa, J. Am. Chem. Soc., 2007, 129, 2607–2614.
Notes and references
2
1
S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun,
J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, 26 L. Zhai, N. Huang, H. Xu, Q. Chen and D. Jiang, Chem. Commun.,
Y. Fang, J. Li and H. Zhou, Adv. Mater., 2018, 30, 1704303. 2017, 53, 4242–4245.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14538--14541 | 14541