Inorganic Chemistry
ARTICLE
With increasing incubation time, the intracellular fluorescence
intensity was enhanced because the strongly fluorescent L
(released from Hg2L2) diffused to the whole cell (entry 2). With
continued treatment of the SYS5 cell lines above with HgCl2 (10
μM), their fluorescence images became dim quickly (entry 3).
Surprisingly, after about 2 min, the intracellular fluorescence was
revived to its original intensity again (entry 4). We repeated such
experiments to find that the intracellular fluorescent decreases
(entries 1, 3, 5, 7, and 9) and increases (entries 2, 4, 6, 8, and 10)
could be recurrent at least 10 times. For illustration of an
alternate fluorescence variation, the in situ determination of their
corresponding fluorescence in vivo in the SYS5 cell lines was
also shown in Figure 10. Obviously, the reversible intracellular
fluorescence revival upon the multistep addition of HgCl2 was
relevant to the increase of the intracellular active mercapto
biomolecules. As we know from cell biology, upon intracellular
uptake of some toxic species such as Hg2+ ions, the cells will start
the transduction and expression of antigene, and those detox
species are biosynthesized and secreted into the cells. SYS5, as
a kind of intracellular thiol-enriched cells, can always secrete
mercapto biomolecules for Hg2+ complexation when the toxic
Hg2+ ions are added repeatedly. These mercapto biomolecules
can form a stable complex with Hg2+ ions and excrete out of the
cells via metabolism to complete a self-detoxification process.
Therefore, L/Hg2L2 can be applied to track the intracellular self-
detoxification process, which will give a simple and convenient
method to study the cell toxicity. This also provides a new way of
communicating with living systems and adjusting and controlling
the chemical species inside cells that are critical for intracellular
engineering, manipulation, and the probe.19
’ ACKNOWLEDGMENT
This work was supported by the National Natural Science
Foundation of China (Grants 20953002, 20903110, and
60978034), the Research Grants Council of the Hong Kong
SAR (Project CityU 123607), and the National Basic Research
Program of China (Grant 2007CB936001).
’ REFERENCES
(1) Shahrokhian, S. Anal. Chem. 2001, 73, 5972–5978.
(2) (a) Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg,
I. H.; D’Agostino, R. B.; Wilson, P. W.; Wolf., P. A. N. Engl. J. Med. 2002,
346, 476–483. (b) Ueland, P. M.; Vollset, S. E. Clin. Chem. 2004,
50, 1293–1295.
(3) (a) Hassan, S. S. M.; Rechnitz, G. A. Anal. Chem. 1982,
54, 1972–1976. (b) Hwang, C.; Sinskey, A. J.; Lodish, H. F. Science
1992, 257, 1496–1502. (c) Hong, R.; Han, G.; Fernandez, J. M.; Kim,
B.-J.; Forbes, N. S.; Rotello, V. M. J. Am. Chem. Soc. 2006, 128,
1078–1079.
(4) Guan, X.; Hoffman, B.; Dwivedi, C.; Matthees, D. P. J. Pharm.
Biomed. Anal. 2003, 31, 251–261.
(5) Capitan, P.; Malmezat, T.; Breuille, D.; Obled, C. J. Chromatogr.,
B: Biomed. Sci. Appl. 1999, 732, 127–135.
(6) Qian, X.-X.; Nagashima, K.; Hobo, T.; Guo, Y.-Y.; Yamaguchi, C.
J. Chromatogr., A 1990, 515, 257–264.
(7) (a) Melnyk, S.; Pogribna, M.; Pogribny, I.; Hine, R. J.; James, S. J.
J. Nutr. Biochem. 1999, 10, 490–497. (b) Hiraku, Y.; Murata, M.;
Kawanishi, S. Biochim. Biophys. Acta 2002, 1570, 47–52.
(8) (a) Wang, W.; Rusin, O.; Xu, X.; Kim, K. K.; Escobedo, J. O.;
Fakayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.;
Lawrence, C. M.; Fronczek, F. R.; Warner, I. M.; Strongin, R. M.
J. Am. Chem. Soc. 2005, 127, 15949–15958. (b) Li, H.; Fan, J.; Wang,
J.; Tian, M.; Du, J.; Sun, S.; Sun, P.; Peng, X. Chem. Commun.
2009, 5904–5906. (c) Maeda, H.; Matsuno, H.; Ushida, M.; Katayama,
K.; Saeki, K.; Itoh, N. Angew. Chem., Int. Ed. 2005, 44, 2922–2925.
(d) Kim, T.-K.; Lee, D.-N.; Kim, H.-J. Tetrahedron Lett. 2008,
49, 4879–4881. (e) Lin, W. Y.; Long, L. L.; Yuan, L.; Cao, Z. M.; Chen,
B. B.; Tan, W. Org. Lett. 2008, 10, 5577–5580. (f) Lee, K. S.; Kim, T. K.;
Lee, J. H.; Kim, H. J.; Hong, J. I. Chem. Commun. 2008, 6173–6175.
(g) Zhang, X. J.; Ren, X. S.; Xu, Q. H.; Loh, K. P.; Chen, Z. K. Org. Lett.
2009, 11, 1257–1260. (h) Wang, W.; Escobedo, J. O.; Lawrence, C. M.;
Strongin, R. M. J. Am. Chem. Soc. 2004, 126, 3400–3401. (i) Chen, X.;
Zhou, Y.; Peng, X.; Yoon, J. Chem. Soc. Rev. 2010, 39, 2120–2135. (j)
Chen, X.; Ko, S.-K.; Kim, M. J.; Shin, I.; Yoon, J. Chem. Commun. 2010,
46, 2751–2753.
(9) (a) Berezin, M. Y.; Achilefu, S. Chem. Rev. 2010, 110
2641–2684. (b) Lee, J. H.; Lim, C. S.; Tian, Y. S.; Han, J. H.; Cho,
B. R. J. Am. Chem. Soc. 2010, 132, 1216–1217. (c) Bouffard, J.; Kim, Y.;
Swager, T. M.; Weissleder, R.; Hilderbrand, S. A. Org. Lett. 2008,
10, 37–40. (d) Tang, B.; Xing, Y.; Li, P.; Zhang, N.; Yu, F.; Yang, G.
J. Am. Chem. Soc. 2007, 129, 11666–11667. (e) Zhang, M.; Yu, M.; Li, F.;
Zhu, M.; Li, M.; Gao, Y.; Li, L.; Liu, Z.; Zhang, J.; Zhang, D.; Yi, T.;
Huang, C. J. Am. Chem. Soc. 2007, 129, 10322–10323.
(10) (a) Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu,
J.-G. Org. Lett. 2006, 8, 859–861. (b) Wu, J.-S.; Hwang, I.-C.; Kim, K. S.;
Kim, J. S. Org. Lett. 2007, 9, 907–910. (c) Xiang, Y.; Tong, A.; Jin, P.; Ju,
Y. Org. Lett. 2006, 8, 2863–2866. (d) Yang, Y.-K.; Yook, K.-J; Tae, J.
J. Am. Chem. Soc. 2005, 127, 16760–16761. (e) Xiang, Y.; Tong, A. Org.
Lett. 2006, 8, 1549–1552. (f) Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim,
K. M.; Seo, M. S.; Nam, W.; Yoon, J. J. Am. Chem. Soc. 2005,
127, 10107–10111. (g) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem.
Soc. 1997, 119, 7386–7387. (h) Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim,
J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465–1472. (i) Chen, X.; Nam,
S.-W.; Jou, M. J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Org. Lett. 2008,
10, 5235–5238.
4. CONCLUSIONS
In summary, a coumarin-derived imine (L) was synthesized
and its complex, Hg2L2, was developed as a reversible fluorescent
probe for selective sensing of mercapto biomolecules such as
Cys, Hcy, and GSH. Hg2L2 exhibited a series of advantages as
fluorescent probes including highly sensitive detection, fluores-
cence OFFꢀON, reversible interconversion, good water solubi-
lity, high quantum yield of L (0.50), longer emission wavelength
(525 nm), and a wide pH span (6ꢀ10). The interconversion
of Hg2L2 and L in aqueous solution via the decomplexation/
complexation was definitely verified from crystal structures
and ESI-MS, NMR, UVꢀvis, and fluorescence spectra. Confocal
fluorescence imaging in the SYS5 cells reveals that L/Hg2L2
can be applied to monitor the intracellular self-detoxification
process to avoid toxic intracellular uptake. This will provide a
new strategy for the design of reversible fluorescent probes
to study the self-detoxification mechanism of heavy metals in
living cells.
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray crystallographic data of
b
ligand L and complex Hg2L2 in CIF format, additional spectra,
NMR copies, and visual fluorescence imaging. This material is
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: wangpf@mail.ipc.ac.cn.
(11) (a) Wallace, K. J.; Fagbemi, R. I.; Folmer-Andersen, F. J.; Morey,
J.; Lyntha, V. M.; Anslyn, E. V. Chem. Commun. 2006, 3886–3888.
6550
dx.doi.org/10.1021/ic200181p |Inorg. Chem. 2011, 50, 6543–6551