6
for 2.5 h, at which TLC analysis indicated complete consumption
of starting material. The saturated Na2S2O3 solution was added to
destroy any remaining N-Iodosuccinimide or hypoiodite species.
The resultant mixture was extracted with EtOAc twice, dried
over sodium sulfate and concentrated under reduced pressure.
The residue was purified by silica gel column chromatography
eluting with petroleum and ethyl acetate (1:1) to afford
1. (a) Verbitski, S. M.; Mayne, C. L.; Davis, R. A.; Concepcion,
ACCEPTED MANUSCRIPT
G. P.; Ireland, C. M. J. Org. Chem. 2002, 67, 7124–7126; (b)
Verotta, L.; Pilati, T.; Tato, M.; Elisabetsky, E.; Amador, T.
A.; Nunes, D. S. J. Nat. Prod. 1998, 61, 392–396.
2. (a) Denault, J. B.; Salvesen, G. S. Chem. Rev. 2002, 102,
4489–4500; (b) Jadulco, R.; Edrada, R. A.; Ebel, R.; Berg, A.;
Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. J. Nat.
Prod. 2004, 67, 78–81; (c) Denault, J. B.; Salvesen, G. S.
Chem. Rev. 2002, 102, 4489−4499.
3. Fuchs, R.; Funk, R. L. J. Am. Chem. Soc. 2004, 126,
5068–5069.
4. Novikov, A. J.; Rainier, D. Angew. Chem. Int. Ed. 2006, 45,
4317–4320.
5. Wu, H.; Xiao, F. X.; Qin, Y. J. Am. Chem. Soc. 2010, 132,
14052–14054.
6. Zhang, H.; Hong, L.; Kang, H.; Wang, R. J. Am. Chem. Soc.
2013, 135, 14098– 14101.
7. Trost, B. M.; Kruger, M. S.; Zhang, Y. Chem. Sci. 2015, 6,
349–353.
1
compound 14 (684 mg, 80%) as a white solid. H NMR (400
MHz, CDCl3): δ 8.05-8.03 (m, 2H), 7.73-7.71 (m, 1H), 7.54-7.50
(m, 1H), 7.44-7.40 (m, 2H), 7.37-7.33 (m, 1H), 7.18-7.14 (m,
1H), 6.93-6.91 (m, 1H), 4.75-4.70 (m, 1H), 4.36-4.32 (m, 2H),
3.89-3.85 (m, 1H), 3.82 (s, 3H), 3.77-3.73 (m, 1H), 3.53-3.51 (m,
1H), 3.25 (s, 3H), 3.22-3.19 (m, 1H), 2.73-2.71 (m, 1H),
2.55-2.49 (m, 1H), 2.00-1.93 (m, 1H), 1.78-1.75 (m, 1H),
1.10-1.04 (m, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ 177.7,
171.7, 169.7, 166.4, 143.3, 132.7, 130.5, 129.7, 128.8, 128.6,
128.2, 125.0, 123.3, 108.6, 64.1, 52.3, 51.4, 49.3, 45.9, 42.1,
31.1, 29.6, 27.5, 26.5 ppm. ESI HRMS calcd for C25H26N2O6+H
451.1824, found 451.1915.
8. (a) Yang, J.; Song, H.; Xiao, X.; Wang, J.; Qin, Y. Org. Lett.
2006, 8, 2187–2190; (b) Seo, J. H.; Artman, G. D.; Weinreb,
S. M. J. Org. Chem. 2006, 71, 8891–8900; (c) Schammel, A.
W.; Chiou, G.; Garg, N. K.; Org. Lett. 2012, 17, 4556–4559;
(d) Ishiji, T.; Takemoto, Y. Tetrahedron 2013, 69,
4517–4523; (e) Ishida, T.; Ikota, H.; Kurahashi, K.; Tsukano,
C.; Takemoto, Y. Angew. Chem. Int. Ed. 2013, 52,
10204–10207; (f) Trost, B. M.; Osipov, M. Chem. Eur. J.
2015, 21, 16318–16343; (g) Sabahi, A.; Novikov, A.; Rainier,
J. D. Angew. Chem. 2006, 118, 4423–4426; (h) Ishida, T.;
Ikota, H.; Kurahashi, K.; Tsukano, C.; Takemoto, Y. Angew.
Chem. Int. Ed. 2013, 52, 10204–10207; (i) Morales-Rios, M.
S.; Bucio, M. A.; Joseph-Nathan, P. Tetrahedron 1996, 52,
5339–5348; (j) Evans, M. A.; Sacher, J. R.; Weinreb, S. M.
Tetrahedron 2009, 65, 6712–6719; (k) Han, S. J.; Vogt, F.;
Krishnan, S.; May, J. A.; Gatti, M.; Virgil, S. C.; Stoltz, B.
M. Org. Lett. 2014, 16, 3316–3319; (l) Han, S. J.; Vogt, F.;
May, J. A.; Krishnan, S.; Gatti, M.; Virgil, S. C.; Stoltz, B. M.
J. Org. Chem. 2015, 80, 528–547; (m) Wilkie, R. P.; Neal, A.
R.; Johnston, C. A.; Voute, N.; Lancefield, C. S.; Stell, M. D.;
Medda, F.; Makiyi, E. F.; Turner, E. M.; Ojo, O. S.; Slawin,
A. M. Z.; Lebl, T.; Mullen, P.; Harrison, D. J.; Irelandc, C.
M.; Westwood, N. J. Chem. Commun. 2016, 52,
10747–10750; (n) Popov, K.; Hoang, A.; Somfai, P.
Angew .Chem. Int. Ed. 2016, 55,1801–1804; (o) Artman, G.
D.; Weinreb, S. M. Org. Lett. 2003, 5, 1523–1526; (p) Hoang,
A.; Popov, K.; Somfai, P. J. Org. Chem. 2017, 82,
2171–2176; (q) Zhang, D.; Song, H.; Qin, Y. Acc. Chem.
Res. 2011, 44, 447–457; (r) Du, Y.; Wu, H.; Song, H.; Qin,
Y.; Zhang, D. Chin. J. Chem. 2012, 30, 2970–1973.
9. (a) Gardena, S. J.; Skakle, J. M. S. Tetrahedron Lett. 2002, 43,
1969–1972; (b) Qian, J. Y.; Wang, C. C.; Sha, F.; Wu, X. Y.;
RSC Adv. 2012, 2, 6042–6048; (c) Shanmugam, P.;
Vaithiyanathan, V. Can. J. Chem. 2009, 87, 591–599; (d) Liu,
X. W.; Han, W. Y.; Liu, X. L.; Zhou, Y.; Zang, X. M.; Yuan,
W. Chen. Tetrahedron 2014, 70, 9191–9197; (e) Chen, G. Y.;
Zhong, F.; Lu, Y. Org. Lett. 2012, 14, 3955–3957; (f) Liu, X.
L.; Yuan, W. C.; Huang, W. C.; Zhou, Y.; Feng, T. T.; Lin, B.
CN 103936649 B; (g) Wang, C. C.; Wu, X. Y. Tetrahedron
2011, 67, 2974–2978; (i) Yun, M. J.; Yang, J. I.; Kim, J. N.
Bull. Korean Chem. Soc. 2002, 23, 1651–1654; (j) Fan, X.;
Yang, H. B.; Shi, M. Adv. Synth. Catal. 2017, 359, 49-57; (k)
Dong, Z.; Yan, C.; Gao, Y. Z.; Dong, C, Qiu, G. F.; Zhou, H.
B. Adv. Synth. Catal. 2015, 357, 2132–2142; (l) Malini, K.;
Periyaraja, S.; Shanmugam, P. Tetrahedron Lett. 2015, 56,
5123–5127; (m) Nezhad, A. K.; Mohammadi, S. Synthesis.
2012, 44, 1725–1735.
4.132-(3'-(2-hydroxyethyl)-1-methyl-2,2'-dioxospiro[indoline-
3,4'-piperidin]-3'-yl)-N-methylacetamide (15)
To a solution of 14 (135 mg, 0.3 mmol) in 5 mL MeOH was
added MeNH2 (2.5 mL, 30% in MeOH) at room temperature, and
the mixture was then stirred overnight. After evaporation, the
residue was directly applied to silica gel column chromatography
eluting with CH2Cl2 and MeOH (20:1) to afford compound 15
(72.4 mg, 70%) as a yellow solid. 1H NMR (400 MHz, CDCl3): δ
7.52-7.50 (m, 1H), 7.30-7.27 (m, 1H), 7.11-7.07 (m, 2H),
6.88-6.86 (m, 1H), 4.64 (s, 1H), 4.24-4.21 (m, 1H), 3.95-3.91 (m,
1H), 3.83-3.67 (m, 2H), 3.56-3.46 (m, 3H), 3.19 (s, 3H),
2.98-2.96 (m, 1H), 2.78-2.77 (m, 3H), 2.38-3.31 (m, 1H),
1.79-1.74 (m, 2H), 1.65-1.56 (m, 1H), 0.94-0.94 (m, 1H) ppm;
13C NMR (100 MHz, CDCl3): δ 177.9, 172.9, 168.8, 143.1,
128.9, 128.4, 124.9, 123.4, 108.6, 67.9, 61.8, 51.5, 46.2, 45.3,
30.9, 30.0, 26.5, 26.2, 25.6 ppm. ESI HRMS calcd for
C18H23N3O4+H 346.1722, found 346.1706.
4.142-(1'-benzoyl-3'-(2-hydroxyethyl)-1-methyl-2,2'-dioxospir
o[indoline-3,4'-piperidin]-3'-yl) acetamide (16)
To a solution of 14 (100 mg, 0.22 mmol) in 5 mL MeOH was
added NH3 H2O (2 mL, 35% in H2O) at room temperature, and
the mixture was then stirred for 1.5 h. After evaporation, the
residue was directly applied to silica gel column chromatography
eluting with CH2Cl2 and MeOH (20:1) to afford compound 16
1
(72 mg, 75%) as a yellow solid. H NMR (600 MHz, CDCl3): δ
8.04-8.03 (m, 2H), 7.55-7.52 (m, 1H), 7.50-7.48 (m, 1H),
7.44-7.41 (m, 2H), 7.36-7.34 (m, 1H), 7.14-7.11 (m, 1H),
6.93-6.92 (m, 1H), 6.50 (s, 1H), 5.57 (s, 1H), 4.37-4.29 (m, 3H),
3.98-3.96 (m, 1H), 3.86-3.82 (m, 1H), 3.65-3.61 (m, 1H), 3.25 (s,
3H), 3.15-3.13 (m, 1H), 2.48-2.43 (m, 1H), 1.98-1.93 (m, 1H),
1.86-1.82 (m, 1H), 1.22-1.16 (m, 1H) ppm; 13C NMR (100 MHz,
CDCl3): δ 177.6, 175.1, 171.8, 170.8, 166.4, 143.2, 132.7, 130.3,
129.6, 128.9, 128.4, 128.2, 124.8, 123.2, 108.6, 64.0, 51.4, 51.1,
46.2, 42.4, 30.5, 27.6, 26.5ppm. ESI HRMS calcd for
C24H25N3O5+H 436.1828, found 436.1831.
Acknowledgements
We are grateful for the financial support from the NSFC
(2102106, 21572138).
Supplementary data
Supplementary data associated with this article can be found
in the online version.
References and notes