thermally drivenstepwise[2 þ 2] cycloaddition,9,10 wehave
been drawn back to this original cationic cycloaddition
because of (a) its potential in constructing cyclobutane
containing natural products specifically those fused with a
chromane nucleus11ꢀ14 such as rhododaurichromanic acid
A [see Scheme 2]15 and (b) there were disagreements in the
early literature regarding the prospect of an acid-promoted
cyclobutane formation. More significantly, we recognized
that we could not only apply our oxa-[3 þ 3] annula-
tion16ꢀ18 along with this stepwise cationic [2 þ 2] cycload-
dition to access these targets but also develop a formidable
cascade in natural product synthesis if they are deployed in
tandem.19 We wish to report our success in developing
such a strategy through total syntheses of these natural
products.
The general concept to cyclobutane containing
chromane natural products such as clusiacyclol A and
B,13a,20 iso-eriobrucinol A and B, eriobricinol,21,22
and cannabicyclol23 is shown in Scheme 2. While syn-
thesis of the chromanyl nucleus would be achieved via an
oxa-[3 þ 3] annulation of phenols 4 with R,β-unsaturated
iminium salts 5, construction of the cyclobutane ring
would feature an acid promoted cationic intramolec-
ular [2 þ 2] cycloaddition of 6. This strategy could be
carried in a sequential manner or rendered in a tandem
manner.
(8) For reviews, see: (a) Harmata, M.; Rashatasakhon, P. Tetrahe-
dron 2003, 59, 2371. (b) Harmata, M. Tetrahedron 1997, 53, 6235.
(9) For a leading review on thermally driven [2 þ 2] cycloadditions,
see: Baldwin, J. E.; Trost, B. M.; Fleming, I.; Pattenden, G. Compre-
hensive Organic Synthesis; Pergamon Press: New York, 1991; p 63.
(10) (a) Ko, C.; Feltenberger, J. B.; Ghosh, S. K.; Hsung, R. P. Org.
Lett. 2008, 10, 1971. (b) Feltenberger, J. B.; Ko, C.; Deng, J.; Ghosh,
S. K.; Hsung, R. P. Heterocycles 2012, 84, 843. (c) Deng, J.; Hsung, R. P.;
Ko, C. Org. Lett. 2012, 14, 5562.
Scheme 2. A General Synthetic Approach
(11) For a leading review, see: Shen, H. C. Tetrahedron 2009, 65, 3931.
(12) The cyclobutane ring of these natural products has mostly been
constructed through a photochemical [2 þ 2] cycloaddition. See: (a)
Crombie, L.; Redshaw, S. D.; Black, D. A.; Whiting, D. A. J. Chem.
Soc., Perkin Trans. 1 1983, 1411. (b) Crombie, L.; Ponsford, R. J. Chem.
Soc. C 1971, 796. (c) Crombie, L.; Ponsford, R.; Shani, A.; Yagnitinsky,
B.; Mechoulam, R. Tetrahedron Lett. 1968, 9, 5771.
(13) (a) For basic conditions to promote cyclobutane formation and
total syntheses of clusiacyclol A and B, see: Mondal, M.; Puranik, V. G.;
Argade, N. P. J. Org. Chem. 2007, 72, 2068. (b) For cyclobutane
formation using pyridine, see: Montero, J. L.; Winternitz, F. Tetrahe-
dron 1973, 29, 1243. (c) Crombie, L.; Ponsford, R. Chem. Commun.
[London] 1968, 894. (d) Crombie, L.; Crombie, W. M. L. Phytochem-
istry 1975, 14, 213. (e) Kane, V. V.; Razdan, R. K. J. Am. Chem. Soc.
1968, 90, 6551. (f) For usage of BF3ꢀEt2O, see: Yagen, B.; Mechoulam,
R. Tetrahedron Lett. 1969, 10, 5353.
(14) For a cationic ene-cyclization mechanism, see: Kane, V. V.
Tetrahedron Lett. 1971, 12, 4101.
(15) (a) For isolation, see: Kashiwada, Y.; Yamazaki, K.; Ikeshiro,
Y.; Yamagishi, T.; Fujioka, T.; Mihashi, K.; Mizuki, K.; Cosentino,
L. M.; Fowke, K.; Morris-Natschke, S. L.; Lee, K.-H. Tetrahedron 2001,
57, 1559. For total syntheses, see: (b) Kurdyumov, A. V.; Hsung, R. P.;
Ihlen, K.; Wang, J. Org. Lett. 2003, 5, 3935. (c) Kang, Y.; Mei, Y.; Du,
Y.; Jin, Z. Org. Lett. 2003, 5, 4481. (d) Hu, H.; Harrison, T. J.; Wilson,
P. D. J. Org. Chem. 2004, 69, 3782. (e) Also see ref 1.
(16) For reviews, see: (a) Harrity, J. P. A.; Provoost, O. Org. Biomol.
Chem. 2005, 3, 1349. (b) Hsung, R. P.; Kurdyumov, A. V.; Sydorenko, N.
Eur. J. Org. Chem. 2005, 1, 23. (c) Hsung, R. P.; Cole, K. P. Strategies and
Tactics in Organic Synthesis; Pergamon Press: Oxford, U.K., 2004; p 41.
(17) For recent development of oxa-[3 þ 3] annulations, see: (a)
Fotiadou, A. D.; Zografos, A. L. Org. Lett. 2012, 14, 5664. (b) Hu, J.;
Dong, W.; Wu, X.-Y.; Tong, X. Org. Lett. 2012, 14, 5530. (c) dos
Samntos, W. H.; da Silva-Filho, L. C. Synthesis 2012, 3361. (d) Lee,
Y. R.; Pandit, R. P. Synthesis 2012, 2910. (e) Parker, K. A.; Thomas L.
Mindt, T. L. Tetrahedron 2011, 67, 9779. (f) Jung, E. J.; Park, B. H.; Lee,
Y. R. Green Chem. 2010, 12, 2003. (g) Yamamoto, Y.; Itonaga, K. Org.
Lett. 2009, 11, 717. (h) Sagar, R.; Park, J.; Koh, M.; Park, S. B. J. Org.
Chem. 2009, 74, 2171. (i) Hubert, C.; Moreau, J.; Batany, J.; Duboc, A.;
Hurvois, J.-P.; Renaud, J.-L. Adv. Synth. Catal. 2008, 350, 40. (j)
Brioche, J. C. R.; Goodenough, K. M.; Whatrup, D. J.; Harrity,
J. P. A. J. Org. Chem. 2008, 73, 1946.
(18) For applications in total syntheses, see: (a) Song, L.; Yao, H.; Zhu,
L.; Tong, R. Org. Lett. 2013, 15, 6. (b) Li, H.; Tang, Y.; Hsung, R. P.
Tetrahedron Lett. 2012, 53, 6138. (c) Buchanan, G. S.; Cole, K. P.; Tang, Y.;
Hsung, R. P. J. Org. Chem. 2011, 76, 7027. (d) Buchanan, G. S.; Cole, K. P.;
Li, G.; Tang, Y.; You, L.; Hsung, R. P. Tetrahedron 2011, 67, 10105. (e)
Yamashita, S.; Iso, K.; Kitajima, K.; Himura, M.; Hirama, M. J. Org. Chem.
2011, 76, 2408. (f) Wang, X.; Lee, Y. R. Tetrahedron 2011, 67, 9179. (g)
Hosokawa, S.; Matsushita, K.; Tokimatsu, S.; Toriumi, T.; Suzuki, Y.;
Tatsuta, K. Tetrahedron Lett. 2010, 51, 5532. (h) Tang, Y.; Cole, K. P.;
Buchanan, G. S.;Li, G.; Hsung, R. P. Org. Lett. 2009, 11, 1591. (i) Wang, X.;
Lee, Y. R. Tetrahedron 2009, 65, 10125. (j) Jeso, V.; Nicolaou, K. C.
Tetrahedron Lett. 2009, 50, 1161. (k) Lee, Y. R.; Li, X.; Kim, J. H. J. Org.
Chem. 2008, 73, 4313. (l) Yamashita, S.; Iso, K.; Hirama, M. Org. Lett. 2008,
10, 3413. (m) Lee, Y. R.; Kim, J. H.; Yong, C. S.; Im, J. S.; Lyoo, W. S. Bull.
Korean Chem. Soc. 2008, 29, 515.
(19) For leading reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96,
115. (b) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. 1993, 32, 131. (c)
Tietze, L. F. J. Heterocycl. Chem. 1990, 27, 47.
(20) For isolations of clusiacyclol A and B: Gonzalez, J. G.; Olivares,
E. M.; Monache, F. D. Phytochemistry 1995, 38, 485.
(21) For isolations of eriobrucinol, see: (a) Jefferies, P. R.; Worth,
G. K. Tetrahedron 1973, 29, 903. (b) Bukuru, J.; Van, T. N.; Puyvelde,
L. V.; He, W.; De Kimpe, N. Tetrahedron 2003, 59, 5905. (c) For
additional eriobrucinol data, see: Rashid, M. A.; Armstrong, J. A.;
Gray, A. I.; Waterman, P. G. Phytochemistry 1992, 31, 3583.
(22) For total syntheses of iso-eriobrucinol A and B and eriobrucinol,
see: (a) Crombie, L.; Redshaw, S. D.; Black, D. A.; Whiting, D. A.
J. Chem. Soc., Chem. Commun. 1979, 628. (b) Reference 12a.
(23) For isolation, assignment, and synthesis of cannabicyclol, see:
(a) See Refs 12b, 12c, 13cꢀ13f, and 14. (b) Claussen, U.; von Spulak, F.;
Korte, F. Tetrahedron 1968, 24, 1021. (c) Begley, M. J.; Clarke, D. G.;
Crombie, L.; Whiting, D. A. J. Chem. Soc. D 1970, 1547. (d) Gaoni, Y.;
Mechoulam, R. J. Am. Chem. Soc. 1971, 93, 217. (e) Boeren, E. G.;
Elsohly, M. A.; Turner, C. E. J. Heterocycl. Chem. 1978, 15, 699. For a
review, see: (f) Turner, C. E.; Elsohly, M. A.; Boeren, E. G. J. Nat. Prod.
1980, 43, 169. (g) Kane, V. V.; Martin, A. R.; Peters, J. A. J. Org. Chem.
1984, 49, 1793.
B
Org. Lett., Vol. XX, No. XX, XXXX