Transfer hyrogenation of aryl ketones with ruthenium complexes
H2), 3.03–2.89 (m, 2 H, H6), 2.77–2.53 (m, 2 H, H3), 2.26–1.69
(m, 5 H, H4, PPh2(CH2)4PPh2), 1.68–1.61 1.34-0.98 (m, 2 H, H5),
0.35–0.23 (m, 4 H, PPh2(CH2)4PPh2). 13C{H} NMR 100 MHz,CDCl3)
(see Figure 2 for the numbering of C atoms): d 144.8, 141.5 (d,
O. Soltani, M. A. Ariger, H. V´azquez-Villa, E. M. Carreira, Org. Lett.,
2010, 12, 2893.
[5] J. Canivet, G. Lapat, H. Stoeckli-Evans, G. Süss-Fink, Eur. J. Inorg.
Chem. 2005, 4493.
[6] a) W. Baratta, G. Chelucci, S. Gladiali, K. Siega, M. Toniutti, M. Zanette,
E. Zangrando, P. Rigo, Angew. Chem. Int. Ed. 2005, 44, 6214; b) W.
Baratta, E. Herdtweck, K. Siega, M. Toniutti, P. Rigo, Organometallics
2005, 24, 1660; c) A. Del Zotto, W. Baratta, M. Ballico, E. Herdtweck,
P. Rigo, Organometallics 2007, 26, 5636.
[7] a) A. C. Hillier, H. M. Lee, E. D. Stevens and S. P. Nolan, Organo-
metallics 2001, 20, 4246; b) H. Türkmen, T. Pape, F. E. Hahn,
B. Çetinkaya, Organometallics 2008, 27, 571; c) H. Türkmen,
T. Pape, F. E. Hahn, B. Çetinkaya, Eur. J. Inorg. Chem. 2008,
5418; d) S. Gülcemal, J. -C. Daran, B. Çetinkaya, Inorg. Chim. Acta
2011, 365, 264; e) W. N. O. Wylie, A. J. Lough, R. H. Morris,
Organometallics, 2012, 31, 2137; f) İ. Özdemir, S. Yaşar and
B. Çetinkaya, Trans. Metal Chem. 2005, 30, 831; g) M. Yigit,
B. Yigit, İ. Özdemir, E. Çetinkaya, B. Çetinkaya, Appl. Organomet.
Chem. 2006, 20, 322; h) N. Gürbüz, S. Yaşar, E. Ö. Özcan, İ.
Özdemir and B. Çetinkaya, Eur. J. Inorg. Chem. 2010, 3051.
[8] a) Y. Blum, D. Czarkie, Y. Rahamim, Y. Shvo, Organometallics 1985, 4,
1459; b) Y. Shvo, D. Czarkie, Y. Rahamim, D. F. Chodosh, J. Am. Chem.
Soc. 1986, 108, 7400.
[9] a) N. Menashe, E. Salant, Y. Shvo, J. Organomet. Chem. 1996, 514, 97;
b) C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi, M. Kavana,
J. Am. Chem. Soc. 2001, 123, 1090; c) C. P. Casey, J. B. Johnson,
J. Org. Chem., 2003, 68, 1998.
[10] a) F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A
Comprehensive Text (4th edn), Wiley-Interscience, New York,
1980, pp. 246; b) T. A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem.
1966, 28, 945.
J
C–P = 30.2 Hz, ipso-C, PC6H5), 137.3, 135.3 (d, JC–P = 7.0 Hz, m-C
PC6H5), 133.5, 132.0 (d, JC–P = 2.0 Hz, p-C, PC6H5), 129.0, 126.0 (d,
C–P = 9.0 Hz, o-C PC6H5), 58.7 (C2), 53.9 (C7), 50.1 (C6), 49.5 (C3),
39.8, 30.5, (PPh2(CH2)4PPh2), 27.7 (C4), 24.5 (C5), 21.9, 18.8 (PPh2
(CH2)4PPh2). 31P{1 H} NMR (162 MHz, CDCl3):
54.2 (d,
J
d
J = 36.7 Hz), 40.0 (d, J = 36.7 Hz). IR(CH2Cl2): 523, 696, 743, 956,
998, 1021, 1087, 1188, 1266, 1432, 1481, 1560, 2927, 3050, 3208,
3266, 3344 cmÀ1. Anal. Calcd for C34H42Cl2N2P2Ru (M: 712.63): C,
57.30; H, 5.94; N, 3.93; Found: C, 57.33; H, 5.87; N, 4.00%.
Synthesis of cis-[Ru(PPh2(CH2)5PPh2)(ampi)Cl2] (5)
Prepared by following the procedure for 3 by using [RuCl2(PPh3)3]
(1.221 g, 1 mmol), PPh2(CH2)5PPh2 (0.441 g, 1 mmol) and 2-amino-
methylpiperidine 0.114g, 1 mmol). Yield 0.49 g, 68%. 1 H NMR
(400 MHz, CDCl3): d 7.58 (m, 2 H, P(C6H5)2), 7.49 (m, 2 H, P(C6H5)2),
7.33 (m, 2 H, P(C6H5)2), 7.17–6.99 (m, 14 H, P(C6H5)2), 3.48–3.35
(m, 2 H, H7), 3.15 (m, 1 H, H2), 3.05–2.90 (m, 2 H, H6), 2.87–2.63
(m, 2 H, H3), 2.36–1.58 (m, 7 H, H4, PPh2(CH2)5PPh2), 1.48–1.30,
1.24–0.98 (m, 2 H, H5), 0.44–0.20 (m, 4 H, PPh2(CH2)5PPh2). 13C{H}
NMR 100 MHz,CDCl3) (see Figure 2 for the numbering of C atoms):
d 143.0, 140.3 (d, JC–P = 32.2 Hz, ipso-C, PC6H5), 135.8, 135.3 (d,
[11] a) R. Noyori, T. Ohkuma, Angew. Chem. Int. Ed. 2001, 40, 40; R. Noyori,
T. Ohkuma, Pure Appl. Chem. 1999, 71, 1493; b) H. Doucet,
T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama,
A. F. England, T. Ikariya, R. Noyori, Angew. Chem. Int. Ed. 1998, 37,
1703; c) T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa,
K. Murata, E. Katayama, T. Yokozawa, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1998, 120, 13529; d) T. Ohkuma, M. Koizumi, K. Munfiz,
G. Hilt, C. Kabuto, R. Noyori, J. Am. Chem. Soc. 2002, 124, 6508; e)
M. J. Burk, W. Hems, D. Herzberg, C. Malan, A. Zanotti-Gerosa, Org.
Lett. 2000, 2, 4173; f) K. Mikami, T. Korenaga, T. Ohkuma, R. Noyori,
Angew. Chem. Int. Ed. 2000, 39, 3707; g) T. Ohkuma, M. Koizumi,
M. Yoshida, R. Noyori, Org. Lett. 2000, 2, 1749.
J
C–P = 8.4 Hz, m-C PC6H5), 134.5, 130.9 (s, p-C, PC6H5), 128.6,
127.2 (d, JC–P = 9.25 Hz, o-C PC6H5), 58.9 (C2), 52.4 (C7), 44.5 (C6),
30.6 (C3), 30.3, 28.8 (PPh2(CH2)5PPh2), 27.1 (C4), 25.7 (C5), 23.6,
21.0, 18.5 (PPh2(CH2)5PPh2). 31P{1 H} NMR (162 MHz, CDCl3):
58.2 (d, J = 38.3 Hz), 37.6 (d, J = 38.3 Hz).IR(CH2Cl2): 513, 537, 693,
744, 956,1022, 1087, 1188, 1405, 1432, 1482, 1560, 2928, 3007,
3060, 3228, 3263, 3343 cmÀ1. Anal. Calcd for C35H44Cl2N2P2Ru
(M: 726.66): C, 57.85; H, 6.10; N, 3.86; Found: C, 57.80; H, 5.99; N,
3.90%.
[12] a) W. Baratta, K. Siega, P. Rigo, Chem. Eur. J. 2007, 13, 7479; b). A. Del
Zotto, C. Greco, W. Baratta, K. Siega, P. Rigo, Eur. J. Inorg. Chem.
2007, 2909; c) W. Baratta, K. Siega, P. Rigo, Adv. Synth. Catal.
2007, 349, 1633; d) W. Baratta, M. Ballico, S. Baldino, G. Chelucci,
E. Herdtweck, K. Siega, , S. Magnolia, P. Rigo, Chem. Eur. J. 2008,
14, 9148; e) W. Baratta, F. Benedeti, A. Del Zotto, L. Fanfoni, F. Felluga,
S. Magnolia, E. Putignano, P. Rigo, Organometallics 2010, 29,
3563; f) W. Baratta, G. Bossi, E. Putignano, P. Rigo, Chem. Eur.
J. 2011, 17, 3474.
[13] a) S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1995, 117, 7562; b) A. Fujii, S. Hashiguchi, N. Uematsu,
T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1996, 118, 2521; c) J. Takehara,
S. Hashiguchi, A. Fujii, S. Inoue, T. Ikariya, R. Noyori, Chem. Commun.
1996, 233.
Hydrogen Transfer Catalytic Experiments
The tested complex (0.01 mmol) was dissolved in a solution of
KOH (0.1 mmol), and 2-propanol (5 ml) in a Schlenk tube. The
solution was heated to 82 ꢀC for 30 min. Subsequently, substrate
(1 mmol) was added with an Eppendorf pipette. The reaction
progress was monitored by GC and 1 H NMR spectra. Yields were
determined by GC for an average of three runs.
Acknowledgements
Financial support was from Ege University (Project 2010-FEN-046).
I thank Dr S. Astley at Ege University Chemistry Department for
reading the manuscript and Mr Salih Günnaz For NMR analyses.
[14] S. L. Queiroz, A. A. Batista, G. Oliva, M. T. d. P. Gambardella,
R. H. A. Santos, K. S. MacFarlane, S. J. Rettig, B. R. James, Inorg. Chim.
Acta 1998, 267, 209.
[15] a) A. Z. L. Lu, K. Eichele, I. Warad, H. A. Mayer, E. Lindner, Z. J. Jiang,
V. Z. Schuring, Anorg. Allg. Chem. 2003, 629, 1308; b) V. Rautenstrauch,
X. Hoang-Cong, R. Churlaud, K. Abdur-Rasid, R. H. Morris, Chem. Eur.
J. 2003, 9, 4954.
[16] M. D. Le Page, B. R. James, Chem. Commun. 2000, 1647.
[17] K. Abdur-Rasid, A. Hadzovic, J. N. Harvey, A. J. Lough, R. H. Morris,
J. Am. Chem. Soc. 2002, 124, 15104.
[18] a) S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev.
2004, 248, 2201; b) J. S. M. Samec, J. E. Backvall, P. G. Andersson,
P. Brandt, Chem. Soc. Rev. 2006, 35, 237.
[19] a) J. I. vander Vlugt, J. N. Reek, Angew. Chem. Int. Ed. 2009, 48, 8832;
S. Maggini, Coord. Chem. Rev. 2009, 253, 1793. c) S. L. James, Chem.
Soc. Rev. 2009, 38, 1744; d) C. D. Swor, D. R. Tyler, Coord. Chem. Rev.
2011, 255, 2860.
References
[1] a) S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226; b) G. Zassinovic,
G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051; c) R. Noyori,
S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97; d) H.-U. Blaser, C. Malan,
B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal.
2003, 345, 103; e) A. Robertson, T. Matsumoto, S. Ogo, Dalton Trans.
2011, 40, 10304.
[2] S. Ogo, T. Abura, Y. Watanabe, Organometallics 2002, 21, 2964.
[3] T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300.
[4] a) S. Gladiali, G. Mestroni, in Transition Metals for Organic Synthesis
(Eds: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2004, pp. 145; b)
O. Soltani, M. A. Ariger, E. M. Carreira, Org. Lett. 2009, 11, 4196; c)
Appl. Organometal. Chem. 2012, 26, 731–735
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc