S. Sano et al. / Journal of Molecular Catalysis A: Chemical 357 (2012) 117–124
123
both chiral modifiers the (negative) effect on the reaction rate and
ee is stronger, when the IL is used as an additive in 3-pentanone. In
addition, comparison of the data allows differentiation between the
negative effect of the [BMIm]+ aromatic cation and the poisoning
of Pt by the [BF4]− anion.
tuning the enantioselectivity, especially for solvents usually allow-
ing inferior ees.
Financial support by the Swiss National Science Foundation
(Project 200020-131869) is kindly acknowledged.
4. Summary and conclusions
In the enantioselective hydrogenation of 1 to (R)-2 (Scheme 1)
over CD-modified 5% Pt/Al2O3 the highest enantioselectivities
(90–92%) were achieved in the organic solvents 3-pentanone, ethyl
acetate and 1,2-dichlorobenzene (Table 1). Strongly basic solvents
ceased the enantioselection and the commonly used solvents acetic
acid and toluene were not advantageous. In the six different ILs
tested as solvents, the ees varied in the range 46–87%. The ILs
organic solvents by more than two orders of magnitude. Interest-
ingly, application of them as reaction additives in about 1 mass%
improved the ee in some organic solvents, particularly in alco-
hols (Table 2, Fig. 2). The highest ee of 93% (without optimization)
was obtained in an ethyl acetate–[BMIm][FEP] mixture. The signifi-
cant shifts in the catalyst performance provide an indirect evidence
for the location of ILs on the Pt surface during the hydrogena-
tion reactions. In this respect, the effect of ILs on the reaction rate
the method used to introduce them into the reaction mixture, i.e.
whether they were deposited onto the catalyst surface as a thin
supported layer prior to application in toluene that dissolves them
poorly, or they were simply added to a good polar solvent in larger
tion of ILs with the substrate, the chiral modifier and the Pt surface.
In general, IL additives possessing a cycloaliphatic cation (Fig. 1)
[BMPy]+ were detrimental. The most probable explanation is the
blocking of a fraction of surface Pt sites by the strongly adsorbed (-
bonded) cation [65,66]. This competition for the active surface sites
was even more pronounced in the hydrogenation of cyclohexene
under otherwise identical conditions (Table 4), which difference
is probably linked to the different adsorption strengths of the IL,
the substrate, and CD. Note that transformation (hydrolysis or
hydrogenolysis) of the anions [PF6]− and [BF4]− under reaction con-
ditions, and the resulting catalyst poisoning, may also contribute to
the observed deactivation. Nevertheless, all data indicate that the
CD. According to our general knowledge, the electron-rich phenyl
and carbonyl groups of 1 and the extended aromatic ring system
of CD adsorb (close to) parallel to the Pt surface during hydrogen
Pt atoms prevents the significant interaction of these species with
the IL additive.
References
[1] Z.C. Zhang, Adv. Catal. 49 (2006) 153–237.
[2] V.I. Parvulescu, C. Hardacre, Chem. Rev. 107 (2007) 2615–2665.
[3] A. Winkel, P.V.G. Reddy, R. Wilhelm, Synthesis (2008) 999–1016.
[4] H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. A: Gen. 373 (2009) 1–56.
[5] F. Jutz, J.M. Andanson, A. Baiker, Chem. Rev. 111 (2011) 322–353.
[6] Q.H. Zhang, S.G. Zhang, Y.Q. Deng, Green Chem. 13 (2011) 2619–2637.
[7] K. Bica, P. Gaertner, Eur. J. Org. Chem. (2008) 3235–3250.
[8] M. Gruttadauria, S. Riela, P. Lo Meo, F. D’Anna, R. Noto, Tetrahedron Lett. 45
(2004) 6113–6116.
[9] U. Hintermair, T. Hofener, T. Pullmann, G. Francio, W. Leitner, ChemCatChem 2
(2010) 150–154.
[10] Y.L. Gu, G.X. Li, Adv. Synth. Catal. 351 (2009) 817–847.
[11] J.P. Hallett, T. Welton, Chem. Rev. 111 (2011) 3508–3576.
[12] K. Anderson, P. Goodrich, C. Hardacre, D.W. Rooney, Green Chem. 5 (2003)
448–453.
[13] R. Abu-Reziq, D. Wang, M. Post, H. Alper, Adv. Synth. Catal. 349 (2007)
2145–2150.
[14] Y. Kume, K. Qiao, D. Tomida, C. Yokoyama, Catal. Commun. 9 (2008) 369–375.
[15] J. Arras, M. Steffan, Y. Shayeghi, P. Claus, Chem. Commun. (2008) 4058–4060.
[16] Y. Hu, H.M. Yang, Y.C. Zhang, Z.S. Hou, X.R. Wang, Y.X. Qiao, H. Li, B. Feng, Q.F.
Huang, Catal. Commun. 10 (2009) 1903–1907.
[17] H. Hagiwara, T. Nakamura, T. Hoshi, T. Suzuki, Green Chem. 13 (2011)
1133–1137.
[18] D.Q. Xu, Z.Y. Hu, W.W. Li, S.P. Luo, Z.Y. Xu, J. Mol. Catal. A-Chem. 235 (2005)
[19] X. Yuan, N. Yan, C.X. Xiao, C.N. Li, Z.F. Fei, Z.P. Cai, Y. Kou, P.J. Dyson, Green Chem.
12 (2010) 228–233.
[20] M. Ruta, G. Laurenczy, P.J. Dyson, L. Kiwi-Minsker, J. Phys. Chem. C 112 (2008)
17814–17819.
[21] R. Venkatesan, M.H.G. Prechtl, J.D. Scholten, R.P. Pezzi, G. Machado, J. Dupont,
J. Mater. Chem. 21 (2011) 3030–3036.
[22] U. Kernchen, B. Etzold, W. Korth, A. Jess, Chem. Eng. Technol. 30 (2007)
985–994.
[23] K. Obert, D. Roth, M. Ehrig, A. Schonweiz, D. Assenbaum, H. Lange, P. Wasser-
scheid, Appl. Catal. A-Gen. 356 (2009) 43–51.
[24] C.P. Mehnert, E.J. Mozeleski, R.A. Cook, Chem. Commun. (2002) 3010–3011.
[25] C.P. Mehnert, Chem. Eur. J. 11 (2005) 50–56.
[26] J. Dupont, G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Teixeira, J. Am. Chem.
Soc. 124 (2002) 4228–4229.
[27] M. Khodadadi-Moghaddam, A. Habibi-Yangjeh, M.R. Gholami, Appl. Catal. A-
Gen. 341 (2008) 58–64.
[28] J. Arras, M. Steffan, Y. Shayeghi, D. Ruppert, P. Claus, Green Chem. 11 (2009)
716–723.
[29] H.U. Blaser, H.P. Jalett, M. Müller, M. Studer, Catal. Today 37 (1997) 441–463.
[30] M. Bartók, Curr. Org. Chem. 10 (2006) 1533–1567.
[31] M. von Arx, T. Mallat, A. Baiker, Top. Catal. 19 (2002) 75–87.
[32] D. Ferri, T. Bürgi, K. Borszeky, T. Mallat, A. Baiker, J. Catal. 193 (2000)
139–144.
[33] J.M. Bonello, R.M. Lambert, N. Künzle, A. Baiker, J. Am. Chem. Soc. 122 (2000)
9864–9865.
[34] D. Ferri, T. Bürgi, A. Baiker, J. Phys. Chem. B 108 (2004) 14384–14391.
[35] D. Ferri, S. Diezi, M. Maciejewski, A. Baiker, Appl. Catal. A: Gen. 297 (2006)
165–173.
[36] M. Sutyinszki, K. Szöri, K. Felföldi, M. Bartók, Catal. Commun. 3 (2002) 125–127.
[37] K. Balázsik, I. Bucsi, S. Cserényi, G. Szöllösi, M. Bartók, J. Mol. Catal. A-Chem. 285
(2008) 84–91.
[38] F. Hoxha, B. Schimmoeller, Z. Cakl, A. Urakawa, T. Mallat, S.E. Pratsinis, A. Baiker,
J. Catal. 271 (2010) 115–124.
The situation is different, when an O-aryl function is introduced
heteroaromatic cations of the ILs via -bonding interactions. Sim-
troscopic methods [49–52,64]. As a result of this interaction the
chiral space available for adsorption of the ␣-ketoester substrate
changes, inducing a change in the substrate–chiral modifier inter-
action and in the enantioselectivity (Tables 5 and 6). This approach,
the double modification of the Pt surface with a strongly adsorbing
chiral molecule and an interacting IL offers a new possibility for
[39] S. Diezi, A. Szabo, T. Mallat, A. Baiker, Tetrahedron: Asymmetry 14 (2003)
2573–2577.
[40] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH,
2003.
[41] P.G. Jessop, Green Chem. 13 (2011) 1391–1398.
[42] W.-R. Huck, T. Bürgi, T. Mallat, A. Baiker, J. Catal. 200 (2001) 171–180.
[43] Y. Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. (1980) 670.
[44] H.U. Blaser, H.P. Jalett, J. Wiehl, J. Mol. Catal. 68 (1991) 215–222.
[45] L.S. Ott, S. Campbell, K.R. Seddon, R.G. Finke, Inorg. Chem. 46 (2007)
10335–10344.
[46] J. Arras, D. Ruppert, P. Claus, Appl. Catal. A-Gen. 371 (2009) 73–77.
[47] L.S. Ott, M.L. Cline, M. Deetlefs, K.R. Seddon, R.G. Finke, J. Am. Chem. Soc. 127
(2005) 5758–5759.
[48] L.M. Rossi, G. Machado, P.F.P. Fichtner, S.R. Teixeira, J. Dupont, Catal. Lett. 92
(2004) 149–155.