C O M M U N I C A T I O N S
Scheme 3. Enantioselective Synthesis of (+)-Aquaticol
Table 2. Copper-Mediated Asymmetric Oxidative
Dearomatization/[4 + 2] Dimerizationa
suggests that use of (-)-sparteine completely overrides the slight
chirality induction from the 7-R center of (+)-cuparenol (25).
In conclusion, we have developed a highly enantioselective
approach to bicyclo[2.2.2]octenones involving asymmetric oxidation
of substituted phenols to o-quinols followed by homochiral dimer-
ization. Our studies have revealed a facile ketol rearrangement/
dimerization of o-quinols derived from 2,4-disubstituted phenols
and have culminated in the enantioselective synthesis of (+)-
aquaticol. Further studies, including asymmetric oxidative dearo-
matization of other substrates and mechanistic experiments, are
currently in progress and will be reported in due course.
Acknowledgment. Financial support from the NIH (GM-
073855 and P50 GM067041), Wyeth Pharmaceuticals, and Merck
Research Laboratories is gratefully acknowledged. We thank Prof.
Ste´phane Quideau (IECB, ISM UMR-CNRS 5225, University of
Bordeaux) for providing a sample of (+)-aquaticol and Dr. Shun
Su (Boston University) for helpful discussions.
a Reaction conditions: 1.0 equiv of lithium phenolate, 1.1 equiv of [(-)-
sparteine]2Cu2O2(PF6)2 complex, 3 Å MS, O2, THF, -78 °C, 16 h. b Isolated
yield after chromatography. c Yield based on recovered starting materials
in parenthesis. d Product obtained from thermolysis of the crude oxidation
product (neat) at 50 °C (40 min). e Product obtained from thermolysis of
the crude oxidation product (80 °C, 16 h).
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
Scheme 2. Rearrangement of 4-Alkyl-2,4-cyclohexadienones
References
(1) Presented in part at the 234th American Chemical Society National
Meeting, Boston, MA, August 19-23, 2007; ORGN abstract 653.
(2) Carman, R. M.; Lambert, L. K.; Robinson, W. T.; Van Dongen, J. M. A.
M. Aust. J. Chem. 1986, 39, 1843.
(3) Su, B.-N.; Zhu, Q.-X.; Jia, Z.-J. Tetrahedron Lett. 1999, 40, 357.
(4) Chien, S.-C.; Chang, J.-Y.; Kuo, C.-C.; Hsieh, C.-C.; Yang, N.-S.; Kuo,
Y.-H. Tetrahedron Lett. 2007, 48, 1567.
(5) Gagnepain, J.; Mereau, R.; Dejugnac, D.; Leger, J.-M.; Castet, F.; Deffieux,
D.; Pouysegu, L.; Quideau, S. Tetrahedron 2007, 63, 6493.
(6) (a) Carman, R. M.; Owsia, S.; Van Dongen, J. M. A. M. Aust. J. Chem.
1987, 40, 333. (b) Berube, A.; Drutu, I.; Wood, J. L. Org. Lett. 2006, 8,
5421. (c) Gagnepain, J.; Castet, F.; Quideau, S. Angew. Chem., Int. Ed.
2007, 46, 1533.
(7) For the preparation of optically active 2,4-cyclohexadienones, see: Myers,
A. G.; Siegel, D. R.; Buzard, D. J.; Charest, M. G. Org. Lett. 2001, 3,
2923.
(8) Zhu, J.; Grigoriadis, N. P.; Lee, J. P.; Porco, J. A., Jr. J. Am. Chem. Soc.
2005, 127, 9342.
(9) Compound 5 shows a measurable optical rotation. Determination of the
enantiomeric excess is currently under investigation.
(10) See Supporting Information for complete experimental details.
(11) Itoh, S.; Kumei, H.; Taki, M.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S.
J. Am. Chem. Soc. 2001, 123, 6708.
(12) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. ReV. 2004,
104, 1013. (b) Hatcher, L. Q.; Karlin, K. D. J. Biol. Inorg. Chem. 2004,
9, 669.
(13) (a) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young, V.
G., Jr.; Que, L., Jr.; Zuberbuhler, A. D.; Tolman, W. B. Science 1996,
271, 1397. (b) Mirica, L. M.; Rudd, D. J.; Vance, M. A.; Solomon, E. I.;
Hodgson, K. O.; Hedman, B.; Stack, T. D. P. J. Am. Chem. Soc. 2006,
128, 2654.
22, which further dimerized to ent-8. Comparison of the optical
rotations of 8 and ent-8 indicates that these two compounds have
opposite absolute configurations.10 To further probe this process,
phenol 23 was investigated as an oxidation substrate (entry 8). To
our surprise, o-quinol 24 did not dimerize at room temperature,
and the monomer could be observed by crude NMR analysis.10
However, attempts to purify this intermediate on silica gel led to
decomposition and recovery of only a small amount of dimer ent-
9. Thermolysis of monomer 24 in benzene cleanly afforded dimer
ent-9. On the basis of this information, it is apparent that the R-ketol
rearrangement affords an isomeric o-quinol possessing an unsubsti-
tuted cis-alkene moiety that is more reactive in [4 + 2] dimerization.
The copper-mediated asymmetric oxidative dearomatization/
dimerization methodology provides a rapid entry to the homochiral
dimer (+)-aquaticol (2, Scheme 3). Enantiomerically pure (+)-
cuparenol (25) was prepared from commercially available (+)-
cuparene (26) following a known procedure.6c Asymmetric oxidative
dearomatization of the derived lithium phenolate 27 furnished
(14) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.;
Solomon, E. I.; Stack, T. D. P. Science 2005, 308, 1890.
(15) Itoh, S.; Taki, M.; Nakao, H.; Holland, P. L.; Tolman, W. B.; Que, L.,
Jr.; Fukuzumi, S. Angew. Chem., Int. Ed. 2000, 39, 398.
(16) Ottenwaelder, X.; Rudd, D. J.; Corbett, M. C.; Hodgson, K. O.; Hedman,
B.; Stack, T. D. P. J. Am. Chem. Soc. 2006, 128, 9268.
(17) Kneifel, H.; Poszich-Buscher, C.; Rittich, S.; Breitmaier, E. Angew. Chem.,
Int. Ed. 1991, 30, 202.
(+)-aquaticol (2) ([R]22 ) +46.1, c 0.65, CHCl3) as a single
D
diastereomer. X-ray crystal structure analysis of 2 further confirmed
its relative stereochemistry and reassignment of the absolute
configuration.6c,10 A control experiment using N,N-di-tert-butyl-
ethylenediamine as achiral ligand in the oxidation generated a
mixture of 2 and its epimer at C3 and C10 in a 43:57 ratio,10 which
(18) Paquette, L. A.; Hofferberth, J. E. Org. React. 2003, 62, 477.
JA711018Z
9
J. AM. CHEM. SOC. VOL. 130, NO. 9, 2008 2739