M. K. Pandey et al. / Tetrahedron Letters 47 (2006) 897–900
899
References and notes
O
N
Ph
O
N
1. For a review on enantioselective carbonyl-ene reactions,
see: (a) Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T.
Synlett 1992, 255–265; (b) Berrisford, D. J.; Bolm, C.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1717–1719; (c)
Dias, L. C. Curr. Org. Chem. 2000, 4, 305–342.
Ph
O
O
N
Cu
O
O
N
Cu
OEt
O
OEt
O
Ph
2
. Whitesell, J. K.; Bhattacharya, A.; Buchanan, C. M.;
Chen, H. H.; Deyo, D.; James, D.; Liu, C.-L.; Minto, M.
A. Tetrahedron 1986, 42, 2993–3001.
Re face attack
Complex of 5; Square Planar)
Si face attack
Complex of 4; Tetrahedral)
(
3. Maruoka, K.; Hoshino, Y.; Shirasaka, T.; Yamamoto, H.
Tetrahedron Lett. 1988, 29, 3967–3970.
(
Figure 3. Stereochemical model for the glyoxylate-ene reaction.
4. (a) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc.
1
1
1
990, 112, 3949–3954; (b) Mikami, K. Pure Appl. Chem.
996, 68, 639–644; (c) Mikami, K.; Matsukawa, S. Nature
997, 385, 613–615.
more favorable in the case of Cu(II) complexes.13 There
is no extra stabilization, as proposed in the case of 4, for
change over in the metal geometry from square planar
to tetrahedral. Thus, the glyoxylate-ene reaction with
the Cu(II) complex of chiral ligand 5 proceeds via nor-
mal square planar geometry where the reaction occurs
from the Re face of the coordinated aldehyde. The lower
enantioselectivity in the case of ligand 5 is manifest from
the transition state model. As a result of the ring fusion
at the chiral centres, the fused aryl ring moves away
from the aldehyde, thus making the Si face of the coor-
dinated aldehyde vulnerable to attack to some extent.
The Cu(I) complex of the ligand 5 gave the same sense
of induction (entries 8, 10 and 12) as that of the Cu(II)
complex. This can be explained by invoking octahedral
geometry where two solvent ligands could be assumed
to chelate the copper.
5
6
. (a) Evans, D. A.; Burgey, C. S.; Paras, N. A.; Vojkovsky,
T.; Tregay, S. W. J. Am. Chem. Soc. 1998, 120, 5824–5825;
(
b) Evans, D. A.; Tregay, S. W.; Burgey, C. S.; Paras, N.
A.; Vojkovsky, T. J. Am. Chem. Soc. 2000, 122, 7936–7943.
. (a) Johannsen, M.; Jørgensen, K. A. J. Org. Chem. 1995,
6
0, 5757–5762; (b) Carreira, E. M.; Lee, W.; Singer, R. A.
J. Am. Chem. Soc. 1995, 117, 3649–3650; (c) Chavarot,
M.; Byrne, J. J.; Chavant, P. Y.; Pardillos-Guindet, J.;
Vallee, Y. Tetrahedron: Asymmetry 1998, 9, 3889–3894;
(d) Manickam, G.; Sundarajan, G. Tetrahedron: Asym-
metry 1999, 10, 2913–2925; (e) Thorhauge, J.; Roberson,
M.; Hazell, R. G.; Jørgensen, K. A. Chem. Eur. J. 2002, 8,
1
888–1898.
7
. For some recent papers in the area, see: (a) Pandiaraju, S.;
Chen, G.; Lough, A.; Yudin, A. K. J. Am. Chem. Soc.
2
001, 123, 3850–3851; (b) Kaden, S.; Hiersemann, M.
Synlett 2002, 1999–2002; (c) Kezuka, S.; Ikeno, T.;
Yamada, T. Org. Lett. 2001, 3, 1937–1939; (d) Sekiguti,
T.; Lizuka, Y.; Takizawa, S.; Jayaprakash, D.; Arai, T.;
Sasai, H. Org. Lett. 2003, 5, 2647–2650; (e) Kezuka, S.;
Kogami, Y.; Ikeno, T.; Yamada, T. Bull. Chem. Soc. Jpn.
In conclusion, we have shown that ligands 4 and 5 gave
high enantioselectivity in the glyoxylate-ene reaction. A
1
4
2
003, 76, 49–58; (f) Simonelli, B.; Orlandi, S.; Benglia, M.;
maximum of 100% ee was obtained in this reaction.
Pozzi, G. Eur. J. Org. Chem. 2004, 2669–2673; (g)
Takizawa, S.; Somei, H.; Jayaprakash, D.; Sasai, H.
Angew. Chem., Int. Ed. 2003, 42, 5711–5714; (h) Yuan, Y.;
Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2003, 42,
We have also provided a hypothesis to explain the rever-
sal in enantioselectivity in the reaction. The results
reported here also support the proposition of Jørgensen
for change over in metal geometry to account for the
reversal in enantioselectivity.
5
478–5480; (i) Guo, H.; Wang, X.; Ding, K. Tetrahedron
Lett. 2004, 45, 2009–2012; (j) Mandoli, A.; Orlandi, S.;
Pini, D.; Salvadori, P. Tetrahedron: Asymmetry 2004, 15,
3233–3244; (k) Caplan, N. A.; Hancock, F. E.; Page, P. C.
B.; Hutchings, G. J. Angew. Chem., Int. Ed. 2004, 43,
1685–1688; (l) Langer, M.; Remy, P.; Bolm, C. Synlett
2005, 781–784.
General procedure for the enantioselective glyoxylate-
ene reaction. A mixture of chiral ligand 4 or 5
(
(
0.015 mmol, 6 mol %), (CuOTf)Ætoluene or Cu(OTf)2
0.0125 mmol, 5 mol %) and 4 A powdered molecular
˚
8
9
. For mechanistic aspects of the reaction, see: Morao, I.;
McNamara, J. P.; Hiller, I. H. J. Am. Chem. Soc. 2003,
sieves (50 mg) in chloroform (2.0 mL) was stirred at
room temperature for 1.5 h. Then, the reaction mixture
was cooled to 0 °C and treated with ethyl glyoxylate
1
25, 628–629.
. (a) DattaGupta, A.; Singh, V. K. Tetrahedron Lett. 1996,
7, 2633–2636; (b) Sekar, G.; DattaGupta, A.; Singh, V.
K. J. Org. Chem. 1998, 63, 2961–2967.
(
0.25 mmol) followed by a-methylstyrene (0.375 mmol).
3
The resulting mixture was stirred for 3–8 h at the same
temperature. After the reaction was complete (monitor-
ing with TLC), most of the solvent was removed under
reduced pressure and the crude mixture was purified
by column chromatography to give the pure ene product
1
0. DattaGupta, A.; Bhuniya, D.; Singh, V. K. Tetrahedron
1994, 50, 13725–13730.
11. For the application of chiral ligand 4 in other enantio-
selective reactions, see: (a) Bernardi, L.; Zhuang, W.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 5772–5773;
(
Table 1).
(
b) Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J. Am.
Chem. Soc. 2003, 125, 14768–14783; (c) Christensen, C.;
Juhl, K.; Jørgensen, K. A. Chem. Commun. 2001, 2222–
Acknowledgements
2
223; (d) Lowenthal, R. E.; Masamune, S. Tetrahedron
Lett. 1991, 32, 7373–7376.
We thank the Department of Science and Technology,
India, for a research grant. A.B. thanks the Council of
Scientific and Industrial Research, New Delhi, for a
senior research fellowship.
1
2. For applications of chiral ligand 5 in other enantioselec-
tive reactions, see: (a) Saito, T.; Yamada, T.; Miyazaki, S.;
Otani, T. Tetrahedron Lett. 2004, 45, 9581–9584; (b)
Bandini, M.; Bernardi, F.; Bottoni, A.; Cozzi, P. G.;