ORGANIC
LETTERS
2
011
Vol. 13, No. 24
540–6543
Modular Synthesis of Functionalized
Bis-bispidine Tetraazamacrocycles
6
Zhuo Wang,* Erin J. Miller, and Samantha J. Scalia
Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,
Canada N9B 3P4
Received October 20, 2011
ABSTRACT
An effective synthesis is reported for the construction of highly rigid and preorganized bis-bispidine tetraazamacrocycles bearing either identical
0
or different functionalities. Using essential building blocks derived from N-Boc-N -allylbispidinone, the modular approach facilitates independent
incorporation of the functional groups to the macrocyclic framework as well as selective derivatization of one functionality in the presence of
another.
Macrocyclic compounds are capable of forming stable
complexes with selected metal ions of unusual oxidation
1
states. This is particularly the case for highly rigid and
preorganized frameworks such as bis-bispidine tetraaza-
2
ꢀ6
macrocycles (1) (Figure 1).
Due to the high rigidity
of the structure and the steric hindrance around the
cavity, the macrocycle is considered to have unprecedented
ligand field strength for a tetramine donor and has been
used to encapsulate metal ions to form highly stable com-
plexes which exhibit interesting optical and electronic
Figure 1. Bis-bispidine tetraazamacrocycle.
2
,3
properties.
As part of our research interest to construct polymacro-
cycles which can be used to selectively bind metal ions with
interesting oxidation and electronic states, it was necessary
to incorporate the rigid tetraazamacrocycles into a poly-
mer framework. This requires that the macrocycle pos-
sess suitable functional groups which can be utilized in a
polymerization reaction. For this purpose, we found that
(
1) (a) Constable, E. C. Coordination Chemistry of Macrocyclic
Compounds; Oxford Science Publications: New York, 1999. (b) Ribas
Gispert, J. Coordination Chemistry; Wiley-VCH: Weinheim, 2008. (c)
Dietrich, B.; Viout, P.; Lehn, J.-M. Macrocyclic Chemistry: Aspects of
Organic and Inorganic Supramolecular Chemistry; VCH Weinheim: New
York, 1993. (d) Coordination Chemistry of Macrocyclic Compounds;
Melson, G. A., Ed.; Plenum Press: New York, 1979. (e) Synthetic Multi-
dentate Macrocyclic Compounds; Izatt, R. M., Christensen, J. J., Eds.;
Academic Press, Inc.: New York, 1978.
7
,8
(
2) For recent reviews, see: (a) Comba, P.; Schiek, W. Coord. Chem.
Rev. 2003, 238ꢀ239, 21. (b) Barefield, E. K. Coord. Chem. Rev. 2010,
54, 1607. (c) Hancock, R. D.; Melton, D. L.; Harrington, J. M.;
McDonald, F. C.; Gephart, R. T.; Boone, L. L.; Jones, S. B.; Dean,
N. E.; Whitehead, J. R.; Cockrell, G. M. Coord. Chem. Rev. 2007, 251,
(7) For metal-containing polymers, see: (a) Manners, I. Synthetic
Metal-Containing Polymers; Wiley-VCH Verlag: Weinheim, 2004. (b)
Abd-El-Aziz, A. S. Macromol. Rapid Commun. 2002, 23, 995. (c)
Metal-Containing and Metallosupramolecular Polymers and Materials;
Schubert, U. S., Newkome, G. R., Manners, I., Eds.; ACS Symposium Series
928; American Chemical Society: Washington, D.C., 2006.
(8) For polymacrocycles, see, for example: (a) Zhan, H.; Lamare, S.;
Ng, A.; Kenny, T.; Guernon, H.; Chan, W.-K.; Djurisic, A. B.; Harvey,
P. D.; Wong, W.-Y. Macromolecules 2011, 44, 5155. (b) Delaviz, Y.;
Gibson, H. W. Macromolecules 1992, 25, 4859. (c) Huang, X.; Zhu, C.;
Zhang, S.; Li, W.; Guo, Y.; Zhan, X.; Liu, Y.; Bo, Z. Macromolecules
2008, 41, 6895.
2
1678.
(3) Comba, P.; Pritzkow, H.; Schiek, W. Angew. Chem., Int. Ed. 2001,
0, 2465.
4
(
(
4) Miyahara, Y.; Goto, K.; Inazu, T. Chem. Lett. 2000, 620.
5) Miyahara, Y.; Goto, K.; Inazu, T. Tetrahedron Lett. 2001, 42,
3
097.
6) Galasso, V.; Goto, K.; Miyahara, Y.; Kovac, B.; Klasinc, L.
Chem. Phys. 2002, 277, 229.
(
1
0.1021/ol202840s r 2011 American Chemical Society
Published on Web 11/15/2011