Journal of Natural Products
Article
(NaCl) νmax (cm−1) 3600−3100 (br, N−H), 2957 (m, C−H), 2870
pressure to afford 7.5 mg (88% yield) of compound 37 as a white
1
(w, C−H), 1658 (s, CO), 1605 (w, CO), 1457 (s); H NMR
solid: [α]25 +131 (c 0.16, CHCl3); UV (MeOH) λmax (nm) 252,
D
(400 MHz, CDCl3) δH 7.24 (d, J = 7.7 Hz, 2H, H5 + H5′), 7.09 (td, J
= 7.6, 1.2 Hz, 2H, H7 + H7′), 6.73 (td, J = 7.5, 1.0 Hz, 2H, H6 + H6′),
6.55 (d, J = 7.8 Hz, 2H, H8 + H8′), 5.45 (s, 2H, 2×NH), 5.16 (s, 2H,
H2 + H2′), 3.95 (app ddd, J = 11.4, 5.7, 1.9 Hz, 2H, H11 + H11′), 3.86
(dd, J = 5.3, 2.5 Hz, 2H, H15 + H15′), 2.86 (s, 6H, 2×NCH3), 2.8−2.7
(m, 4H, H12a + H12a′ + H12b + H12b′), 1.7−1.6 (m, 2H, H18 + H18′),
1.4−1.2 (m, 4H, H17a + H17a′ + H17b + H17b′), 0.83 (d, J = 6.6 Hz, 6H,
2×CH3), 0.54 (d, J = 6.6 Hz, 6H, 2×CH3); 13C NMR (100 MHz,
CDCl3) δC 166.4 (C), 165.2 (C), 151.3 (C), 130.3 (CH), 126.4 (C),
125.9 (CH), 119.5 (CH), 110.0 (CH), 79.1 (CH), 61.2 (CH), 59.5
(C), 58.7 (CH), 38.5 (CH2), 37.7 (CH2), 32.3 (CH3), 24.6 (CH),
23.8 (CH3), 22.8 (CH3); ESIMS m/z 625 [M + H]+; HRESIMS m/z
625.3497 [M + H]+ (calcd for C36H45N6O4, 625.3493).
Synthesis of exo-L-Ditryptoleucine 11d. Procedure 1. To a
solution of the dipeptide 36a (93 mg, 0.09 mmol, 1.0 equiv) in
MeOH (9 mL, 0.01 M) was added activated Pd on C (112 mg, 10%
wt loading, 1.05 g/mmol). The argon atmosphere was replaced by
hydrogen, which was allowed to bubble into the solution for 3−5 min.
The resulting suspension was stirred at rt under hydrogen overnight.
The reaction was filtered through Celite washing with EtOAc, and the
solvent was evaporated under vacuum to afford 62.4 mg of exo-L-
ditryptoleucine 11d (94% yield for the two transformations). Further
purification was not required.
306; IR (NaCl) νmax (cm−1) 2953 (m, C−H), 2867 (w, C−H), 1745
1
(s, CO), 1651 (s, CO), 1601 (w, CO), 1464 (s); H NMR
(400 MHz, CDCl3) δH 7.20 (td, J = 7.8, 1.2 Hz, 2H, H7 + H7′), 7.09
(d, J = 7.4 Hz, 2H, H5 + H5′), 6.77 (t, J = 7.4 Hz, 2H, H6 + H6′), 6.70
(d, J = 8.0 Hz, 2H, H8 + H8′), 5.28 (s, 2H, H2 + H2′), 4.79 (d, J = 14.8
Hz, 2H, H16a + H16a′), 4.40 (d, J = 14.8 Hz, 2H, H16b + H16b′), 3.99
(dd, J = 10.0, 6.9 Hz, 2H, H11 + H11′), 3.7−3.6 (m, 2H, H15 + H15′),
3.69 (s, 6H, 2×CO2Me), 2.50 (dd, J = 12.7, 10.1 Hz, 2H, H12a
+
H
12a′), 2.40 (dd, J = 12.7, 7.0 Hz, 2H, H12b + H12b′), 2.15 (s, 6H, H21
+ H21′), 1.7−1.5 (m, 4H, H17a + H17a′ + H18 + H18′), 1.4−1.3 (m, 2H,
H17b + H17b′), 0.92 (d, J = 6.5 Hz, 6H, 2×CH3), 0.89 (d, J = 6.4 Hz,
6H, 2×CH3); 13C NMR (100 MHz, CDCl3) δC 173.1 (C), 173.0 (C),
150.1 (C), 130.6 (CH), 126.9 (C), 126.0 (CH), 118.9 (CH), 107.3
(CH), 82.6 (CH), 67.9 (CH2), 62.7 (CH), 59.8 (C), 59.1 (CH), 52.8
(CH3), 37.0 (CH2), 35.4 (CH3), 34.0 (CH2), 24.6 (CH), 24.0
(CH3), 22.3 (CH3); ESIMS m/z 713 [M + H]+; HRESIMS m/z
713.4028 [M + H]+ (calcd for C40H53N6O6, 713.4021).
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge at
■
sı
Procedure 2. To a solution of the dipeptide 36a (70 mg, 0.07
mmol, 1.0 equiv) in MeOH (7 mL, 0.01 M) was added Pearlman’s
catalyst (28.7 mg, 20% wt loading, 0.41 g/mmol). The argon
atmosphere was replaced by hydrogen, which was allowed to bubble
into the solution for 10 min. The resulting suspension was stirred at
room temperature under hydrogen for 5 h. The reaction was filtered
through Celite washing with MeOH, and the solvent was evaporated.
The residue was purified by flash-column chromatography (silica gel,
from 100:0 to 90:10 v/v CH2Cl2/MeOH) to afford 36.5 mg (85%
Structures of additional homodimeric and heterodimeric
bispyrrolidinoindoline dioxopiperazine natural products,
further efforts on the synthesis of ditryptoleucines,
mechanistic proposal for formation of 37, experimental
procedures, spectroscopic characterization, and copies of
NMR spectra for synthetic intermediates and final
products, and computational studies on bispyrrolidi-
noindoline dioxopiperazine ring formation (PDF)
yield for the two steps) of exo-L-ditryptoleucine 11d: [α]25 +418 (c
D
0.38, CHCl3); UV (MeOH) λmax (nm) 244, 301; IR (NaCl) νmax
(cm−1) 3600−3100 (br, N−H), 2957 (m, C−H), 2870 (w, C−H),
1608 (s, CO), 1464 (s); 1H NMR (400 MHz, CDCl3) δH 7.23 (d, J
= 7.6 Hz, 2H, H5 + H5′), 7.15 (t, J = 7.5 Hz, 2H, H7 + H7′), 6.80 (t, J
= 7.5 Hz, 2H, H6 + H6′), 6.63 (t, J = 7.8 Hz, 2H, H8 + H8′), 5.25 (s,
2H, H2 + H2′), 5.00 (s, 2H, 2×NH), 3.82 (dd, J = 10.4, 6.7 Hz, 2H,
H11 + H11′), 3.74 (t, J = 6.9 Hz, 2H, H15 + H15′), 2.92 (s, 6H,
2×NCH3), 2.7−2.6 (m, 4H, H12a + H12a′ + H12b + H12b′), 1.7−1.6 (m,
2H, H18 + H18′), 1.48 (t, J = 7.0 Hz, 4H, H17a + H17a′ + H17b + H17b′),
0.87 (d, J = 6.5 Hz, 12H, 4×CH3); 13C NMR (100 MHz, CDCl3) δC
167.4 (C), 167.0 (C), 150.4 (C), 130.3 (CH), 127.0 (C), 125.9
(CH), 119.7 (CH), 110.5 (CH), 79.0 (CH), 63.5 (CH), 59.3 (C),
58.3 (CH), 41.1 (CH2), 36.5 (CH2), 33.5 (CH3), 24.9 (CH), 23.2
(CH3), 22.8 (CH3); 1H NMR (400 MHz, DMSO-d6) δH 7.23 (d, J =
7.4 Hz, 2H, H5 + H5′), 7.05 (td, J = 7.6, 1.2 Hz, 2H, H7 + H7′), 6.71
(s, 2H, 2×NH), 6.66 (td, J = 7.9, 1.0 Hz, 2H, H6 + H6′), 6.61 (dd, J =
7.9, 1.0 Hz, 2H, H8 + H8′), 5.09 (s, 2H, H2 + H2′), 3.9−3.8 (m, 2H,
H15 + H15′), 3.8−3.7 (m, 2H, H11 + H11′), 2.81 (s, 6H, 2×NCH3),
AUTHOR INFORMATION
■
Corresponding Authors
́
Rosana Alvarez − Departamento de Química Orgánica,
CINBIO, and Instituto de Investigacións Biomédicas de Vigo
(IBIV), Universidade de Vigo, 36310 Vigo, Spain;
́
Angel R. de Lera − Departamento de Química Orgánica,
CINBIO, and Instituto de Investigacións Biomédicas de Vigo
(IBIV), Universidade de Vigo, 36310 Vigo, Spain;
Authors
Andrea Areal − Departamento de Química Orgánica,
CINBIO, and Instituto de Investigacións Biomédicas de Vigo
(IBIV), Universidade de Vigo, 36310 Vigo, Spain
Marta Domínguez − Departamento de Química Orgánica,
CINBIO, and Instituto de Investigacións Biomédicas de Vigo
(IBIV), Universidade de Vigo, 36310 Vigo, Spain
Pim Vendrig − Departamento de Química Orgánica,
CINBIO, and Instituto de Investigacións Biomédicas de Vigo
(IBIV), Universidade de Vigo, 36310 Vigo, Spain
Susana Alvarez − Departamento de Química Orgánica,
CINBIO, and Instituto de Investigacións Biomédicas de Vigo
(IBIV), Universidade de Vigo, 36310 Vigo, Spain
2.6−2.4 (m, 4H, H12a + H12a′ + H12b + H12b′), 1.6−1.5 (m, 2H, H18
+
H
18′), 1.5−1.4 (m, 4H, H17a + H17a′ + H17b + H17b′), 0.84 (d, J = 6.5
Hz, 6H, 2×CH3), 0.81 (d, J = 6.4 Hz, 6H, 2×CH3); 13C NMR (100
MHz, DMSO-d6) δC 166.7 (C), 165.5 (C), 151.5 (C), 129.7 (CH),
127.2 (C), 125.3 (CH), 118.0 (CH), 109.4 (CH), 77.7 (CH), 62.2
(CH), 58.8 (C), 57.5 (CH), 40.0 (CH2), 37.0 (CH2), 32.5 (CH3),
24.4 (CH), 23.3 (CH3), 22.4 (CH3); ESIMS m/z 625 [M + H]+;
HRESIMS m/z 625.3497 [M + H]+ (calcd for C36H45N6O4,
625.3493).
Synthesis of Bispyrrolidinoindoline 1,3,5-Triazepan-6-one 37. To
a solution of the bis-coupled product 35a (10 mg, 0.01 mmol, 1.0
equiv) in MeOH (1 mL, 0.01 M) was added Pearlman’s catalyst (4
mg, 20% wt loading, 0.41 g/mmol). The argon atmosphere was
replaced by hydrogen, which was allowed to bubble into the solution
for 5 min. The resulting suspension was stirred at rt under hydrogen
for 5 h. The reaction mixture was filtered through Celite washing with
CHCl3 and MeOH, and the solvent was evaporated under reduced
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
1736
J. Nat. Prod. 2021, 84, 1725−1737