RSC Advances
Paper
¨
ꢅ The Langmuir adsorption model can be suitably applied to 16 E. Ozdemir and G. Gece, Key Eng. Mater., 2019, 800, 108–112.
calculate the different thermodynamic parameters related to 17 G. L. Mendonça, S. N. Costa, V. N. Freire, P. N. Casciano,
the adsorption process.
A. N. Correia and P. de Lima-Neto, Corros. Sci., 2017, 115,
41–56.
ꢅ The interaction energy obtained from the molecular
dynamics simulation is nearly two times higher for compound B 18 Y.-J. Yang, Y.-K. Li, L. Wang, H. Liu, D.-M. Lu and L. Peng,
than compound A, revealing that the simulation method is an
Int. J. Electrochem. Sci., 2019, 14, 3375–3392.
important theoretical tool to compare the anti-corrosive 19 P. Roy, P. Karfa, U. Adhikari and D. Sukul, Corros. Sci., 2014,
behaviour of structurally comparable corrosion inhibitors.
88, 246–253.
20 P. Roy and D. Sukul, RSC Adv., 2015, 5, 1359–1365.
21 P. Roy, T. Maji, S. Dey and D. Sukul, RSC Adv., 2015, 5,
61170–61178.
Conflicts of interest
There are no conicts to declare.
22 D. Sukul, A. Pal, S. Mukhopadhyay, S. K. Saha and
P. Banerjee, J. Mol. Liq., 2018, 249, 930–940.
23 W. Al Zoubi, A. A. S. Al-Hamdani and M. Kaseem, Appl.
Organomet. Chem., 2016, 30, 810–817.
Acknowledgements
PB thanks Department of Science and Technology (DST), Govt. 24 A. W. Jeevadason, K. K. Murugavel and M. A. Neelakantan,
of India for research grant no. GAP-225612. DS, PB and AS thank Renewable Sustainable Energy Rev., 2014, 36, 220–227.
Department of Science & Technology and Biotechnology, 25 P. Shetty, Chem. Eng. Commun., 2019, DOI: 10.1080/
Government of West Bengal, India for supporting research
00986445.2019.1630387.
projects no. 217(Sanc.)/ST/P/S&T/15G-10/2017 and 78(Sanc.)/ST/ 26 A. K. Sinha, U. K. Sharma and N. A. Sharma, Int. J. Food Sci.
P/S&T/6G-1/2018. Infrastructural Development of the Depart- Nutr., 2008, 59, 299–326.
ment of Chemistry, NIT Durgapur through DST-FIST grant of 27 J. D. P. Araujo, C. A. Grande and A. E. Rodrigues, Chem. Eng.
´
DST, Govt of India (no. SR/FST/CSI-267/2015) is also gratefully
acknowledged.
Res. Des., 2010, 88, 1024–1032.
28 M. Fache, B. Boutevin and S. Caillol, ACS Sustainable Chem.
Eng., 2016, 4, 35–46.
29 A. Y. El-Etre, Corros. Sci., 2001, 43, 1031–1039.
30 H. Yamamoto, T. Hoshino and T. Uchiyama, Biosci.,
Biotechnol., Biochem., 1999, 63, 390–394.
31 A. S. Amarasekara, B. Wiredua and A. Razzaq, Green Chem.,
2012, 14, 2395–2397.
32 A. S. Amarasekara and A. Razzaq, ISRN Polym. Sci., 2012,
DOI: 10.5402/2012/532171.
33 V. Balachandan and K. Parimala, Spectrochim. Acta, Part A,
2012, 95, 354–368.
References
1 D. Sukul, A. Pal, S. K. Saha, S. Satpati, U. Adhikari and
P. Banerjee, Phys. Chem. Chem. Phys., 2018, 20, 6562–6574.
2 Z. Tang, Curr. Opin. Solid State Mater. Sci., 2019, DOI:
10.1016/j.cossms.2019.06.003.
3 S. Gangopadhyay and P. A. Mahanwar, J. Coat. Technol. Res.,
2018, 15, 789–807.
´
4 T. J. Harvey, F. C. Walsh and A. H. Nahle, J. Mol. Liq., 2018,
266, 160–175.
34 A. Dutta, S. K. Saha, U. Adhikari, P. Banerjee and D. Sukul,
Corros. Sci., 2017, 123, 256–266.
35 S. K Saha and P. Banerjee, Mater. Chem. Front., 2018, 2, 1674–
1691.
5 S. K. Saha, A. Dutta, P. Ghosh and D. Sukul, Phys. Chem.
Chem. Phys., 2015, 17, 5679–5690.
6 B. Chugh, A. K. Singh, S. Thakur, B. Pani, A. K. Pandey,
H. Lgaz, I.-M. Chung and E. E. Ebenso, J. Phys. Chem. C, 36 I. B. Obot, D. Macdonald and Z. M. Gasem, Corros. Sci., 2015,
2019, 123, 22897–22917. 99, 1–30.
7 W. Zhang, Y. Wang, H.-J. Li, Y. Liu, R. Tao, S. Guan, Y. Li and 37 A. Kokalj, Chem. Phys., 2012, 393, 1–12.
Y.-C. Wu, J. Phys. Chem. C, 2019, 123, 14480–14489.
8 C. Verma, L. O. Olasunkanmi, E. E. Ebenso, M. A. Quraishi
and I. B. Obot, J. Phys. Chem. C, 2016, 120, 11598–11611.
9 A. Dutta, S. K. Saha, P. Banerjee and D. Sukul, Corros. Sci.,
2015, 98, 541–550.
10 A. Dutta, S. K. Saha, P. Banerjee, A. K. Patra and D. Sukul,
RSC Adv., 2016, 6, 74833–74844.
11 R. Yıldız, Ionics, 2019, 25, 859–870.
38 G. Fatti, P. Restuccia, C. Calandra and M. C. Righi, J. Phys.
Chem. C, 2018, 122, 28105–28112.
39 P. Roy, S. K. Saha, P. Banerjee, S. Dey and D. Sukul, Res.
Chem. Intermed., 2017, 43, 4423–4444.
40 P. Geerlings, F. De. Pro and W. Langenaeker, Chem. Rev.,
2003, 103, 1793–1873.
41 S. Saha, R. K. Roy and P. W. Ayers, Int. J. Quantum Chem.,
2009, 109, 1790–1806.
12 W. Gong, X. Yin, Y. Liu, Y. Chen and W. Yang, Prog. Org. 42 F. D. Pro, C. V. Alsenoy, A. Peeters, W. Langenaeker and
Coat., 2019, 126, 150–161.
P. Geerlings, J. Comput. Chem., 2002, 23, 1198–1209.
13 A. Singh, K. R. Ansari, M. A. Quraishi, S. Kaya and 43 R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 1983, 105,
P. Banerjee, New J. Chem., 2019, 43, 6303–6313. 7512–7516.
14 J. Baux, N. Causse, J. Esvan, S. Delaunay, J. Tireau, M. Roy, 44 W. Yang and W. J. Mortier, J. Am. Chem. Soc., 1986, 108,
´
´ `
D. You and N. Pebere, Electrochim. Acta, 2018, 283, 699–707.
5708–5711.
15 M. Murmu, S. K. Saha, N. C. Murmu and P. Banerjee, Corros.
Sci., 2019, 146, 134–151.
9272 | RSC Adv., 2020, 10, 9258–9273
This journal is © The Royal Society of Chemistry 2020