four weak absorptions at 521, 562, 591, and 655 nm (Q-
band), the oligothiophene shows a π-π* band in the region
of 350-470 nm, whose wavelength is red-shifted and
intensity is enhanced with the chain extension, and the
fullerene shows a strong π-π* band at 328 nm accompanied
with weak long-wavelength bands tailing to 704 nm.
Evidently there is no electronic interaction among the three
chromophores in the ground state. On the other hand, the
emission spectra are interactive, as demonstrated for Por-
4T-C60 in Figure 2. When the porphyrin chromophore is
to the respective porphyrin-linked oligothiophenes Por-nT.
On the basis of the quenching and the fluorescence lifetimes
of Por-nT (n ) 4, τ 3.3 × 10-9 s; n ) 8, 1.4 × 10-9 s; n
) 12, 1.3 × 10-9 s), we can estimate from the relation kET
) [Φ(Por-nT)/Φ(Por-nT-C60) - 1]/τ(Por-nT) that the rate
constants for electron transfer reaction (kET) are the follow-
ing: Por-4T-C60, 5.7 × 109 s-1; Por-8T-C60, 6.2 × 108
s-1; Por-12T-C60, 2.0 × 108 s-1. Molecular modeling shows
that the donor-acceptor distances (R) are 1.4 nm for Por-
4T-C60, 3.0 nm for Por-8T-C60, and 4.6 nm for Por-12T-
C60. A plot of ln kET vs R gives a good straight line
according to equation kET ) A exp(-âR). From the slope of
the line, an attenuation factor â ) 0.11 Å-1 is obtained. This
value for electron transfer is much smaller than 0.6-1.2 Å-1
for saturated hydrocarbon bridges12 and 0.32-0.66 Å-1 for
conjugated phenylenes,13 and comparable to 0.04-0.2 Å-1
for polyenes3,14 and 0.04-0.17 Å-1 for polyynes.14b,15
Evidently, the efficient electronic coupling between the donor
and the acceptor of Por-nT-C60 occurs through the oligo-
thiophene spacer. Taking accessibility to extraordinarily long
oligothiophenes into account,16 oligothiophenes are most
promising for long-distance molecular wires.
Acknowledgment. This research was suported by Grants-
in-Aid of Scientific Research (12440180, 12042263, and
13304051) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
Figure 2. Fluorescence spectra of Por-4T (dashed line) and Por-
4T-C60 (solid line) in benzonitrile with excitation at 558 nm.
Supporting Information Available: Detailed experi-
mental procedures and characterization data. This material
OL016511N
excited in benzonitrile, 95% of the porphyrin fluorescence
from Por-4T-C60 as compared to Por-4T is quenched by
the additionally attached fullerene. Considering no ap-
preciable emitting from the fullerene, this result indicates
that a substantial amount of electron transfer occurs from
the porphyrin moiety to the fullerene. Similar quenching is
also observed for the extended homologues, but reduced with
the extended chain length; 46% from Por-8T-C60 and 21%
from Por-12T-C60 in benzonitrile are quenched as compared
(12) (a) Leland, B. A.; Joran, A. D.; Felker, P. M.; Hopfield, J. J.; Zewail,
A. H.; Dervan, P. B. J. Phys. Chem. 1985, 89, 5571-5573. (b) Oevering,
H.; Paddon-Row, M. N.; Heppener, M.; Oliver, A. M.; Cotsaris, E.;
Verhoeven, J. W.; Hush, N. S. J. Am. Chem. Soc. 1987, 109, 3258-3269.
(c) Closs, G. L.; Miller, J. R. Science 1988, 240, 440-447. (d) Johnson,
M. D.; Miller, J. R.; Green, N. S.; Closs, G. L. J. Phys. Chem. 1989, 93,
1173-1176. (e) Finklea, H. O.; Hanshew, D. D. J. Am. Chem. Soc. 1992,
114, 3173-3181. (f) Paulson, B.; Pramod, K.; Eaton, P.; Closs, G.; Miller,
J. R. J. Phys. Chem. 1993, 97, 13042-13045. (g) Xu, J.; Li, H.-L.; Zhang,
Y. J. Phys. Chem. 1993, 97, 11497-11500. (h) Carter, M. T.; Rowe, G.
K.; Richardson, J. N.; Tender, L. M.; Terrill, R. H.; Murray, R. W. J. Am.
Chem. Soc. 1995, 117, 2896-2899.
(13) (a) Osuka, A.; Maruyama, K.; Mataga, N.; Asahi, T.; Yamazaki, I.;
Tamai, N. J. Am. Chem. Soc. 1990, 112, 4958-4959. (b) Helms, A.; Heiler,
D.; McLendon, G. J. Am. Chem. Soc. 1992, 114, 6227-6238. (c)
Barigelletti, F.; Flamigni, L.; Guardigli, M.; Juris, A.; Beley, M.; Chodor-
owski-Kimmens, S.; Collins, J.-P.; Sauvage, J.-P. Inorg. Chem. 1996, 35,
136-142. (d) Schlicke, B.; Belser, P.; De Cola, L.; Sabbioni, E.; Balzani,
V. J. Am. Chem. Soc. 1999, 121, 4207-4214.
(14) (a) Benniston, A. C.; Goulle, V.; Harriman, A.; Lehn, J.-M.;
Marczinke, B. J. Phys. Chem. 1994, 98, 7798-7804. (b) Osuka, A.; Tanabe,
N.; Kawabata, S.; Yamazaki, I.; Nishimura, Y. J. Org. Chem. 1995, 60,
7177-7185.
(15) (a) Grosshenny, V.; Harriman, A.; Ziessel, R. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1100-1102. (b) Grosshenny, V.; Harriman, A.; Ziessel,
R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2705-2708.
(16) Sumi, N.; Nakanishi, H.; Ueno, S.; Takimiya, K.; Aso, Y.; Otsubo,
T. Bull. Chem. Soc. Jpn. 2001, 74, 979-988.
7.20 (d, J ) 3.9 Hz, 1H), 7.24 (d, J ) 3.6 Hz, 1H), 7.31 (d, J ) 3.6 Hz,
1H), 7.76 (s, 1H), 7.74-7.80 (m, 9H), 8.20-8.22 (m, 6H), 8.82 (s, 4H),
8.87 (d, J ) 5.0 Hz, 2H), 9.23 (d, J ) 5.0 Hz, 2H). Anal. Calcd for
C
157H95N5S8: C, 81.32; H, 4.24; N, 3.10. Found: C, 81.06; H, 4.04; N,
2.94. Por-12T-C60: brown powder; mp 119 °C (dec); MS (MALDI-TOF)
m/z 2804 (M+); H NMR (CDCl3) δ -2.71 (s, 2H), 0.89-0.95 (m, 18H),
1
1.23-1.45 (m, 36H), 1.67-1.71 (m, 10H), 1.97 (quin, J ) 7.8 Hz, 2H),
2.72-2.90 (m, 10H), 2.93 (s, 3H), 3.14 (t, J ) 7.8 Hz, 2H), 4.12 (d, J )
9.6 Hz, 1H), 4.88 (d, J ) 9.6 Hz, 1H), 5.07 (s, 1H), 7.00 (s, 2H), 7.02 (s,
2H), 7.01-7.05 (m, 4H), 7.08 (d, J ) 3.9 Hz, 1H), 7.104 (d, J ) 3.7 Hz,
1H), 7.108 (d, J ) 3.7 Hz, 1H), 7.13 (d, J ) 3.7 Hz, 3H), 7.215 (s, 1H),
7.21 (d, J ) 3.9 Hz, 1H), 7.24 (d, J ) 3.9 Hz, 1H), 7.30 (d, J ) 3.9 Hz,
1H), 7.76 (s, 1H), 7.74-7.80 (m, 9H), 8.20-8.22 (m, 6H), 8.82 (s, 4H),
8.87 (d, J ) 5.0 Hz, 2H), 9.23 (d, J ) 5.0 Hz, 2H). Anal. Calcd for
C185H127N5S12: C, 79.22; H, 4.56; N, 2.50. Found C, 79.12; H, 4.42; N,
2.46.
Org. Lett., Vol. 4, No. 3, 2002
311