8
096
Y. N. Belokon’ et al. / Tetrahedron Letters 42 (2001) 8093–8096
Table 4. Influence of ligand structure on the enantioselec-
tivity of the alkylation of N-benzylidene alanine methyl
ester
tively) and King’s College London for financial
support.
Complex
Yield (%)
ee (%)a
References
1
1
1
1
1
b
c
d
e
f
39
78
60
54
68
80
45
0
42
25
1
. For example, see: (a) Saari, W. S.; Halczenko, W.;
Cochran, D. W.; Dobrinska, M. R.; Vincek, W. C.; Titus,
D. C.; Gaul, S. L.; Sweet, C. S. J. Med. Chem. 1984, 27,
713; (b) Fenteany, G.; Standeart, R. F.; Lane, W. S.;
Choi, S.; Corey, E. J.; Schreiber, S. L. Science 1995, 268,
a
Enantiomeric excesses were determined by 1H NMR spectroscopy
after reaction of the amino acid methyl ester with excess 1-
phenylethylisocyanate and are accurate to ±3%.
726; (c) Hanessian, S.; Haskell, T. H. Tetrahedron Lett.
1964, 2451; (d) Jung, G.; Beck-Sickinger, A. G. Angew.
Chem., Int. Ed. Engl. 1992, 31, 367; (e) Veber, D. F.;
Freidinger, R. M. Trends Neuorosci. 1995, 8, 392.
catalyst, a 56% yield of racemic product is obtained.
Hence, the unpurified complex 1d may not exert any
catalytic influence on the reaction. The enantioselec-
tivities observed for the other complexes may also be
being affected to various extents (depending on the
relative reaction rates) by the competing uncatalyzed
reaction, thus masking the true influence of the sub-
stituent. Hence, it appears that the optimal electronic
properties of the ligand are met by an unsubstituted
or alkyl substituted salen complex.
2
. Yaozhong, J.; Changyou, Z.; Shengde, W.; Daimo, C.;
Youan, M.; Guilan, L. Tetrahedron 1988, 44, 5343.
. (a) Schollkopf, U.; Tolle, R.; Egert, E.; Nieger, M.
Liebigs Ann. Chem. 1987, 399; (b) Yamada, S.-I.; Oguri,
T.; Shioiri, T. J. Chem. Soc., Chem. Commun. 1976, 136;
3
(
c) Ikegami, S.; Uchiyama, H.; Hayama, T.; Katsuki, T.;
Yamaguchi, M. Tetrahedron 1988, 44, 5333.
4
. For leading references, see: (a) O’Donnell, M. J.; Del-
gado, F.; Hostettler, C.; Schwesinger, R. Tetrahedron
Lett. 1998, 39, 8775; (b) Lygo, B. Tetrahedron Lett. 1999,
4
0, 1389; (c) Alvarez, R.; Hourdin, M.-A.; Cave, C.;
d’Angelo, J.; Chaminade, P. Tetrahedron Lett. 1999, 40,
091; (d) Horikawa, M.; Busch-Petersen, J.; Corey, E. J.
Further work is needed to understand exactly why
these reaction conditions are optimal. It is possible
that a combination of steric and electronic effects
determine the optimal structure of the imine, and that
p–p interactions between the substrate, catalyst and
solvent are also involved in optimizing the enantiose-
lectivity. The preference for no substituents to be
present on the aryl rings of the catalyst is consistent
with an oligomeric form of the catalyst being the
active species; this is also consistent with the observa-
tion of a non-linear effect during these reactions as
7
Tetrahedron Lett. 1999, 40, 3843; (e) Arai, S.; Nakayama,
K.; Ishida, T.; Shioiri, T. Tetrahedron Lett. 1999, 40,
4
. (a) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem.
Soc. 1999, 121, 6519; (b) Ooi, T.; Takeuchi, M.; Kameda,
M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228; (c)
Ooi, T.; Takeuchi, M.; Ohara, D.; Maruoka, K. Synlett
215.
5
2
001, 1185.
6
. Belokon’, Y. N.; Kochetkov, K. A.; Churkina, T. D.;
Ikonnikov, N. S.; Chesnokov, A. A.; Larionov, O. V.;
Parmar, V. S.; Kumar, R.; Kagan, H. B. Tetrahedron:
Asymmetry 1998, 9, 851.
8
reported earlier.
In conclusion, we have shown that the structure of
the imine within the substrate has a significant influ-
ence on the enantioselectivity of asymmetric phase-
transfer alkylation reactions of alanine methyl ester
with a para-chlorophenyl imine being optimal. The
reaction solvent and rate of stirring have also been
optimized. Attempts to optimize the structure of the
salen ligand have indicated that the initial choice of
an unsubstituted aryl ring provides optimal steric and
electronic properties to the ligand under the reaction
conditions.
7
. (a) Belokon’, Y. N.; Kochetkov, K. A.; Churkina, T. D.;
Ikonnikov, N. S.; Vyskocil, S.; Kagan, H. B. Tetra-
hedron: Asymmetry 1999, 10, 1723; (b) Belokon, Y. N.;
Kochetkov, K. A.; Churkina, T. D.; Ikonnikov, N. S.;
Larionov, O. V.; Harutjunan, S. R.; Vyskocil, S.; North,
M.; Kagan, H. B. Angew. Chem., Int. Ed. 2001, 40, 1948.
. (a) Belokon’, Y. N.; North, M.; Kublitski, V. S.; Ikon-
nikov, N. S.; Krasik, P. E.; Maleev, V. I. Tetrahedron
Lett. 1999, 40, 6105; (b) Belokon’, Y. N.; Davies, R. G.;
North, M. Tetrahedron Lett. 2000, 41, 7245; (c) Belokon’,
Y. N.; North, M.; Churkina, T. D.; Ikonnikov, N. S.;
Maleev, V. I. Tetrahedron 2001, 57, 2491.
8
Acknowledgements
9. Yamamoto, S.; Hashiguchi, S.; Miki, S.; Igata, Y.;
Watanabe, T.; Shiraishi, M. Chem. Pharm. Bull. 1996, 44,
734.
The authors thank the EPSRC and King’s College
London for studentships (to T.P. and J.A.F., respec-
10. Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.;
Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 8340.